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Abstract. Breast histology images classification is a time- and labor-
intensive task due to the complicated structural and textural information
contained. Recent deep learning-based methods are less accurate due to
the ignorance of the interfering multiscale contextual information in his-
tology images. In this paper, we propose the multiscale spatial attention
network (MSA-Net) to deal with these challenges. We first perform adap-
tive spatial transformation on histology microscopy images at multiple
scales using a spatial attention (SA) module to make the model focus
on discriminative content. Then we employ a classification network to
categorize the transformed images and use the ensemble of the predic-
tions obtained at multiple scales as the classification result. We evaluated
our MSA-Net against four state-of-the-art methods on the BACH chal-
lenge dataset. Our results show that the proposed MSA-Net achieves a
higher accuracy than the rest methods in the five-fold cross validation
on training data, and reaches the 2nd place in the online verification.
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1 Introduction

Breast cancer is one of the severe types of cancers in women, which accounts for
25.16% of all cancers with 1.68 million new cases worldwide in 2012 [11]. During
the diagnosis of breast cancer, hematoxylin-eosin (H&E) stained histology im-
ages of tissue regions resulted from needle biopsy are evaluated to determine the
type, including normal, benign, in situ carcinoma, and invasive carcinoma. Due
to the complexity of histology images, detecting carcinoma by pathologists is
time-consuming, labor-intensive, and subjective. The scientific community has
been working on the development of automated detection and diagnosis tools
over the past years. For instance, the Grand Challenge on BreAst Cancer His-
tology images (BACH) [2] organized in conjunction with the 15th International
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Conference on Image Analysis and Recognition (ICIAR 2018) aims at the clas-
sification and segmentation of H&E stained breast histology microscopy images.

Automated classification of H&E stained breast histology microscopy images
is challenging in two aspects. First, microscopy images usually have an extremely
high resolution, and hence contain rich structural information and details, which
are hard to be characterized effectively at a single scale. Second, microscopy
images from different categories may exhibit partly overlapped patterns, which
interfere carcinoma detection, such as the hard mimics from benign lesion which
have similar morphological appearance with carcinoma.

To address both issues, various deep learning-based methods have been de-
signed as a result of the success of deep convolutional neural networks (DCNNs)
in computer vision [4, 1, 3, 10, 9, 13, 14, 5]. Araujo et al. [1] proposed a patches-
based DCNN + SVM model to address the breast microscopy image classification
problem. In this model, a DCNN is designed for feature extraction and a support
vector machine (SVM) is used as a classifier. Chennamsetty et al. [3] constructed
an ensemble of three DCNNs, each of which was pre-trained on different pre-
processing regimes, and achieved the 1st place on the BACH challenge at the
first stage. Besides, attention-based methods [7] were also proposed for this
purpose. For instance, following the design trends of squeeze-and-excitation net-
work (SE-Net) [7], Vu et al. [12] incorporated the self-attention mechanism into
an encoder-decoder network. Despite the improved performance, these DCNN-
based methods still suffer from less-discriminative power resulted mainly from
the inadequate quantity of training data. We suggest exploring the multiscale
and spatial attention aided contextual information, which have been commonly
used by human histology image reader.

In this paper, we propose the multi-scale spatial attention deep convolutional
neural network (MSA-Net) for the automated classification of H&E stained
breast histology microscopy images. To exploit the multiscale information of im-
ages, we first convert each image to three scales, then perform adaptive spatial
transformation on the microscopy patches cropped at each scale by the spatial
attention (SA) module, which is followed by a classification network to categorize
the transformed patches, and finally combine the results to generate the image
label. We expect that can learn how to perform spatial transformation on the
microscopy patches for precise classification. We evaluated the proposed algo-
rithm on the BACH challenge dataset and achieved an accuracy of 94.50±1.27%
in the five-fold cross validation on training data and an accuracy of 94.00% in
the online verification.

2 Method

Given a H&E stained breast histology microscopy image X ∈ RH×W×C , our
goal is to predict the image label Y ∈ {0, 1, 2, 3}, which includes four classes:
Normal (0), Benign (1), In situ carcinoma (2), and Invasive carcinoma (3). The
proposed MSA-Net algorithm consists of three steps: (1) multiscale image patch
extraction, (2) SA-Net based image patch classification, and (3) multi-branch
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Fig. 1. Diagram of the proposed MSA-Net algorithm. For a histology microscopy im-
age, we first extract microscopy patches at multiple scales, then classify these patches
by SA-Net, and finally predict image label by ensemble of the classification results.
The SA-Net includes two parts: the SA module consisting of localization network, grid
generator and sampler, and the classification network. An input patch U is passed to
localization network which regresses the transformation parameters θ, then the regular
spatial grid G over V is transformed to the sampling grid Tθ(G), which is applied to
U , and producing the warped output patch V , and lastly V is passed to classification
network to get label prediction.

ensemble. The diagram that summarizes this algorithm is shown in Fig. 1. We
now delve into the details of each step.

2.1 Multiscale image patch extraction

For an breast histology microscopy image with size of H ×W , we first down-
sample the images by factors f1, f2 and f3 to get resized images at three scales,
where the down-sampling factor f ∈ [1, inf) with f = 1 being the original image.
Then we slide a h × w window with a stride of s on the resized images at each
scale for extracting multiscale microscopy patches. In this way, the number of
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microscopy patches we extracted from an image is

N =
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s

⌋
+ 1

)
×
(⌊

H/f − h
s

⌋
+ 1

)
(1)

where f is the down-sampling factor, and bc denotes rounding down. Note that
the resized images were divided into partly overlapped patches to generate more
training data. Next, the intensities of each microscopy patch are standardized
to zero mean and unit variance.

To alleviate overfitting of SA-Net, we employ two data augmentation meth-
ods to increase the diversity of the training dataset. First, each microscopy
patch is augmented into eight patches by rotating an angle of k · π/2, where
k = {0, 1, 2, 3}, and with/without vertical reflection. Second, random color per-
turbations have been applied to each patch.

2.2 SA-Net based image patch classification

The proposed SA-Net including two parts: the SA module for performing adap-
tive spatial transformation on inputs, and the classification network for predict-
ing the label of transformed patches.

Spatial attention module. Due to the inter- and intra-confusing structural
and textural information, we perform adaptive spatial transformation on mi-
croscopy patches by SA module before categorizing them. The SA module is
split into three parts: (i) localization network, (ii) grid generator, and (iii) sam-
pler, as shown in Fig. 1.

First, a localization network takes the extracted microscopy patch U ∈
Rh×w×C , with h, w and C being the height, width and number of channels re-
spectively, and outputs the transformation parameters θ. Due to their outstand-
ing performance in non-linear transformation, we choose residual network [6]
with 152 learnable layers named ResNet-152 as the backbone network for the
localization network. ResNet-152 includes a convolutional layer with the kernel
size of 7 × 7, a 3 × 3 max pooling layer, four residual blocks, which have 3, 8,
36, and 3 triple-layer residual groups, respectively, and an average pooling layer
followed by the softmax operation. To adapt to our problem, we remove the
classification layer and add two weight layers to predict the transformations: (i)
fully-connected layer to reduce the length of feature vectors from 1024 to 128;
(ii) fully-connected layer with 6-D output.

Then, the predicted transformation parameters are used to create a sampling
grid by the grid generator, which is a set of points where the input map should be
sampled to produce the transformed patch V ∈ Rh×w×C . In detail, the output
pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xOi , y

O
i ), where

i ∈ [0, 1, . . . , hw − 1], forming an output patch V . The spatial transformation
formula is (

xIi
yIi

)
= Tθ(Gi) = Aθ

xOi
yOi
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xOi
yOi
1
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where (xOi , y
O
i ) are the target coordinates of the regular grid in the output patch,

(xIi , y
I
i ) are the source coordinates in the input patch that define the sample

points, and Aθ is a 6-DoF affine transformation matrix.
Lastly, a sampler takes the set of sampling points, along with the input patch

U and produces the sampled output patch V . For doing that, bilinear interpo-
lation sampling is applied in coordinates define the spatial location in U to
generate the value at a particular pixel in V , where bilinear interpolation sam-
pling is an extension of linear interpolation sampling for interpolation function
of two variables on a rectilinear 2D grid.

Classification network. For the transformed microscopy patches, we cate-
gorize them by classification network which using fine-tuned DenseNet-161 [8]
model. Similar to ResNet models, DenseNet-161 consists of 161 learnable layers,
including a convolutional layer with the kernel size of 7× 7, a 3× 3 max pooling
layer, four dense blocks, three transition layers, and a global average pooling
layer followed by the softmax operation. Those four dense blocks contain 6, 12,
36, and 24 dual-layer dense groups, respectively. To adapt the DenseNet-161 to
our problem, we keep only four neurons in the layer before softmax.

2.3 Ensemble of the classification results

Through the SA-Net, a microscopy patch is spatially transformed and recognized
as one of the four classes. The probabilities that a resized image belongs to a
category are determined by the ratio of number of patches belongs to this cate-
gory to the number of patches extracted from this image. Finally, the category
of each histology microscopy image is recognized by the average prediction on
three images resized from that image.

2.4 Training procedure

Since each module of MSA-Net is differentiable, we train this deep learning
model in an end-to-end fashion. To avoid the impact of the SA module in the
initial training stage, the final layer of localization net is initialized to regress
the identity transform of input patches. To train the SA-Net at each scale, we
adopt the Adam optimizer to minimize the cross entropy loss, and set the batch
size to 16, learning rate to 0.0001 with a decay of 10% every 10 training epochs,
and the maximum epoch number to 30.

3 Experiments and Results

3.1 BACH dataset

The ICIAR 2018 grand challenge on BACH dataset [2] was used for this study.
This dataset is composed of 400 H&E stained breast histology microscopy images
with a size of 2048 × 1536 for training a classification model and 100 similar
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images with the same size for testing. Training images have four class labels
including normal, benign, in situ carcinoma and invasive carcinoma (see Fig. 2).
Each of four category contains 100 training images. The 100 testing images were
officially presented for online verification, and their labels are not available.

(a) Normal (b) Benign (c) In situ (d) Invasive

Fig. 2. Four H&E stained breast histology microscopy images from different categories.

3.2 Implementation details

During offline training procedure, we evaluated the proposed MSA-Net algorithm
using 400 training images with the five-fold cross validation.

In the training stage, microscopy patches of size 224 × 224 were extracted
from 320 training images at three scales and were augmented to train SA-Net.
We set the down-sampling factor f1 as 2 which means the size of resized images
is 1024×768(Scale I), and f2 as 4 which means the size of resized images is 512×
384(Scale II). The minimum size of image we down-sampled is 296 × 224(Scale
III), which corresponds to f3 as 6.86. We set the stride to 133 at Scale I, 36 at
Scale II, and 5 at Scale III for training patch extraction. In the testing stage, the
patches were extracted from resized testing images with twice strides againest
training data for computing acceleration.

3.3 Results

We show the accuracy, precision, recall, the area under the receiver operating
characteristic (ROC) curve (AUC), and the ROC curve of the proposed algo-
rithm in differentiating each category of images and the overall classification
accuracy in Table 1 and Fig. 3. It shows that it is easy for the proposed algo-
rithm to separate invasive carcinoma tissues from others, but difficult to separate
normal tissues from others. Nevertheless, we achieved an average AUC of more
than 98.26% in all categories and an overall accuracy of 94.50 ± 1.27%, which
demonstrate the effectiveness of the proposed algorithm in the classification of
breast histology microscopy images.

Next, we compare the proposed MSA-Net algorithm to four recent methods:
(1) using a custom DCNN for feature extraction and a SVM for classification [1],
(2) using a pre-trained VGG-16 together with a variety of data augmentation
methods [2], (3) using a pre-trained Inception-Resnet-v2 together with a training
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Table 1. Performance (mean ± standard deviation) of the proposed MSA-Net algo-
rithm on BACH training images with five-fold cross validation.

Category Accuracy(%) Precision(%) Recall(%) AUC(%)

Normal 96.50±1.84 93.04±3.91 93.00±4.00 99.57±0.24
Benign 97.00±1.00 95.02±2.90 93.00±4.00 99.61±0.26
In situ 97.25±2.15 93.10±7.45 97.00±2.45 99.10±0.79
Invasive 98.25±1.87 98.05±2.39 95.00±4.75 98.26±1.29
All 94.50±1.27 94.80±4.16 94.50±3.80 99.14±0.65

Fig. 3. The ROC curves. The True positive Rate and False Positive Rate are calculated
through a one-vs.-rest strategy based on the classification results.

process of two stages [2], and (4) using ensemble of three pre-trained DCNNs [2].
Table 2 shows the overall accuracy of those four methods, and the accuracy of
our algorithm. It reveals that proposed algorithm is substantially more accurate
than those four methods on this image classification task.

Table 2. Accuracy (%) of the proposed MSA-Net algorithm on BACH training dataset
using five-fold cross valiation and four leading methods.

Method Accuracy(%)

DCNN+SVM,2017 [1] 77.80
Pre-trained VGG-16,2018 [2] 83.00
Pre-trained Inception-Resnet-v2, 2018 [2] 87.00
Ensemble of three DCNNs, 2018 [2] 87.00
MSA-Net (proposed) 94.50

Moreover, besides 400 labeled training images, the organizers of BACH chal-
lenge also provided 100 microscopy images without labels for online testing. We
submitted the classification results, which we obtained on those testing images,
to the official website, and the organizers calculated the accuracy of our algo-
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rithm. We synthesized the leader-board of the challenge at first and second stages
and displayed it in Table 3. It shows that our algorithm achieved an accuracy of
94.00% in the online validation and won the 2nd place on the leader-board.3

Table 3. The leader-board of the BACH challenge on testing dataset (ranked by
accuracy on Task Part A).

Position Participants Accuracy(%)

1 hanwang.0501 95.00
2 young(ours) 94.00
3 bamboo 93.00
4 HeechanYang 93.00
5 YUN1503 92.00
6 heechan 92.00

To further demonstrate the validity of the proposed MSA-Net, we also de-
sign the experiment on another histopathological dataset named Breast Cancer
Histopathological Database (BreakHis), which is composed of 2,480 benign and
5,429 malignant microscopic images of breast tumor tissue with 700×460 pixels
and 3 channels collected from 82 patients using different magnifying factors (40X,
100X, 200X, and 400X). To match the resolution of images in BACH dataset, we
use microscopic images with 40X magnifying factor for experimentation, which
contains 625 benign and 1370 malignant samples. We randomly select 20% of
microscopic images for testing and other images for training. As shown in Table
4, we achieved an AUC of 99.99% in all categories and an overall accuracy of
99.75%, which further demonstrate the effectiveness of the proposed algorithm
in the classification of breast microscopy images.

Table 4. Performance of the proposed MSA-Net algorithm on BreakHis dataset.

Category Accuracy(%) Precision(%) Recall(%) AUC(%)

Benign 99.75 100.00 99.20 99.99
Malignant 99.75 99.65 100.00 99.99
All 99.75 99.83 99.60 99.99

4 Discussion

4.1 Choice of down-sampling factor

The down-sampling factor f represents the resolution of histology microscopy
images input to the SSA-Net, hence plays an important role in classifying images.

3 Available at: https://iciar2018-challenge.grand-challenge.org/evaluation/results/
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To determine the best value of f , we performed the proposed algorithm with
different values of f and show their accuracy in Table 5. Due to the size of
patches we input SA-Net are 224 × 224, the minimum size of image we down-
sampled is 296×224, which corresponds f as 6.86. Table 5 shows that when f is
4, the proposed algorithm has best accuracy, however, when f is 1, the algorithm
has worst accuracy. Hence we empirically set f to 2, 4 and 6.86 respectively in
our experiments.

Table 5. Accuracy of the proposed algorithm with different values of down-sampling
factor f .

f Size of resized image Accuracy(%)

1 2048 × 1536 86.25
2 1024 × 768 92.50
4 512 × 384 93.75

6.86 296 × 224 91.25

4.2 Time complexity

The experiments were performed on a PC (Intel Core i7-4790 CPU 3.2GHz,
NVidia GTX 1080Ti GPU and 32GB memory) with Ubuntu 14.04 64bit system.
It took about 63.5 hours in the training stage and less than 5 seconds in the
testing stage when applying the proposed algorithm to classify each microscopy
image. Despite the fact that training the model is time-consuming, our approach
can be suitably fitted to a routine clinical workflow with pretty fast testing
efficiency.

5 Conclusion

In this paper, we propose the MSA-Net algorithm to classify H&E stained breast
microscopy images into four categories including normal, benign, in situ carci-
noma, invasive carcinoma. Our results demonstrate the superior performance of
the proposed algorithm with the 2nd place on the BACH challenge official leader-
board and a five-fold cross validation accuracy of 94.50±1.27% on BACH training
images. In the future, the proposed MSA-Net algorithm serves great potential
to the development of semi-supervision mechanism when identifying microscopy
images using unlabeled samples.
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