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ABSTRACT Human pose estimation from a monocular image has attracted lots of interest due to its huge
potential application in many areas. The performance of 2D human pose estimation has been improved a
lot with the emergence of deep convolutional neural network. In contrast, the recovery of 3D human pose
from an 2D pose is still a challenging problem. Currently, most of the methods try to learn a universal map,
which can be applied for all human poses in any viewpoints. However, due to the large variety of human
poses and camera viewpoints, it is very difficult to learn a such universal mapping from current datasets
for 3D pose estimation. Instead of learning a universal map, we propose to learn an adaptive viewpoint
transformation module, which transforms the 2D human pose to a more suitable viewpoint for recovering
the 3D human pose. Specifically, our transformation module takes a 2D pose as input and predicts the
transformation parameters. Rather than some hand-crafted criteria, this module is directly learned from
the datasets and depends on the input 2D pose in testing phrase. Then the 3D pose is recovered from
this transformed 2D pose. Since the difficulty of 3D pose recovery becomes smaller, we can obtain more
accurate estimation results. Experiments on Human3.6M and MPII datasets show that the proposed adaptive
viewpoint transformation can improve the performance of 3D human pose estimation.

INDEX TERMS 3D human pose estimation, adaptive viewpoint transformation, deep convolutional neural
network

I. INTRODUCTION

HUMAN pose estimation is to estimate the 2D or 3D
locations of human joints from images or videos.

Specifically, this paper focuses on 3D human pose estimation
from a monocular RGB image. Since there is no need of any
specialized devices, like depth sensor, its possible application
range is much wider than pose estimation from multi-views
or RGB-D images. Due to its huge potential application
in human motion prediction, action analysis and intelligent
video surveillance [1]–[3], 3D human pose estimation from
a monocular image has attracted more and more attention in
recent years.

Due to the loss of depth information when projecting a
person in real world to a 2D image space, it is an ill-posed
problem to estimate the 3D pose from a 2D monocular image.
Considering this nature, early research is restricted to some
simplified settings, such as specified actions or fixed back-
ground. And the approaches either utilize example-based re-

finement or rely on very strong assumption including scaled
orthographic cameras, or calibrated perspective cameras [4],
[5]. Recently, inspired by the success of deep convolutional
neural network (DCNN), lots of DCNN-based 3D human
pose estimation methods are also proposed [6]–[10]. The
3D pose estimation methods can be roughly categorized into
two kinds: one-step model and two-steps model. The former
directly estimates the 3D pose from an image. In contrast,
the latter first estimates 2D pose from an image then recov-
ers 3D pose only using the predicted 2D pose. Compared
with first kind, the two-steps methods have obtained better
performance in wild environment. Since the first step can
exploit the mature 2D estimation methods [11]–[13], current
research priority including this paper focus on the second
step.

In real applications, there is no constraint on the camera
viewpoints. Therefore, for one 3D pose, the projected poses
in 2D space will be highly different due to the large variation
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FIGURE 1. An illustrative example for our motivation. Instead of directly
recovering the 3D pose from a 2D pose, we propose to first transform the
2D pose to a suitable viewpoint and then estimate the 3D pose.

of viewpoints. An illustrative example is shown in Fig. 1,
where several possible 2D human poses in different view-
points are corresponding to an identical 3D pose. Because
of this many-to-one correspondence relationship, it is very
difficult to accurately recover the 3D pose from different 2D
poses. To address this problem, most of the current methods
aim at learning a viewpoint-invariant model, which can re-
cover the 3D pose from 2D pose in arbitrary viewpoint. In the
early stage, this invariance is achieved through hand-crafted
invariant feature, such as the SIFT descriptors [14]. Recently,
many researchers resort to DCNN to learn a powerful model
which can lift arbitrarily 2D pose to its corresponding 3D
pose. For example, based on the spatial transformer networks
[15], Haque et al. [16] proposed to embed a local patch
into a viewpoint invariant feature space. However, it is very
tough for a single model to learn such complex relationship
from current datasets with limited samples. Therefore, these
attempts do not obtain high performance.

Instead of learning a viewpoint-invariant model, we ad-
dress this problem from another direction. We note that the
different 2D human poses in Fig. 1 will become more similar
after appropriate 2D rotation. Moreover, the relationship
between the rotated 2D human pose and 3D pose is much
simpler, which is easier to learn. Actually, in human vision
system, people are habituated to rotate image virtually in
the brain and then recover 3D human pose from the rotated
2D pose. Inspired by this, we propose to transform the
2D human pose prediction and then recover the 3D pose.
Specifically, we design an adaptive viewpoint transformation
module, which transforms the predicted 2D human pose to
a more suitable viewpoint for recovering 3D human pose.
This module just takes a 2D pose as input and outputs the
transformation parameters. Rather than some hand-crafted
criteria, our module is based on the DCNN and is directly
learned from the datasets. In testing, it only depends on the
input 2D pose. Then, a deep model is used for recovering
the 3D pose from the transformed 2D pose. Since the re-
lationship is simplified, the difficulty of 3D pose recovery
process will be reduced, which will lead to more accurate
estimation results. To evaluate the proposed method, we have
conducted extensive experiments on the widely used datasets
Human3.6M [17] and MPII [18]. The experimental results

show the effectiveness of this method.
The rest of this paper is organized as follows: Section II

reviews some very related works. In section III, we elabo-
rate the proposed method. Experimental results and detailed
analysis are in section IV. Finally, we draw the conclusion
and describe the future work in section V.

II. RELATED WORKS
In this section, we will review some related works on 3D hu-
man pose estimation, viewpoint invariant model and dynamic
adaptive network.

A. 3D HUMAN POSE ESTIMATION
Due to the loss of depth information and limited datasets,
3D human pose estimation from a monocular image is a
challenging problem. Many methods belong to the one-step
model, which estimates the 3D human pose directly from
an image. Some methods are based on direct regression,
especially based on the DCNN [6], [19], [20]. For example,
Pavlakos et al. [21] extends the hourglass model in [11]
to 3D case and design a coarse to fine approach to avoid
the large dimension increase. Sun et al. [6] use integral
regression to combine the heat-map and regression-based
representation. Due to the absence of large well-annotated
dataset and complexity of the mapping from a single image to
3D joints location, the performance of these one-step models
is far from satisfactory.

To address the above issues, the two-steps methods are
also widely used, which first estimates 2D human pose from
an input image, and then lifts the predicted 2D pose to 3D
human pose. Since the first step has obtained huge advance-
ment, current researches focus on the second step. Chen et
al. formulate the 3D recovery as a matching problem [8]. A
simple yet effective network architecture is proposed in [9],
which just contains several linear layers and residual blocks.
Based on that the localization difficulty of joints are different,
a coarse-to-fine model and a set of constraints is developed
to gradually localize the joints [22]. In [23], the joints are
divided into two groups. And attention model and random
enhancement module are used to improve the performance.

Our method belongs to the second kind. Compared with
the above methods, we propose to transform the predicted 2D
pose to a suitable viewpoint then recover the 3D pose from
the transformed 2D pose. We deem that it is easier to recover
the 3D pose from transformed 2D pose than the original pose
with larger viewpoint range. Note that it is easier to combine
our framework with the newest methods for estimating the
3D pose from 2D pose to further improve the performance.

B. VIEWPOINT INVARIANT MODEL
Due to the camera viewpoint variation, a single object or
human pose will show different appearance in 2D images.
Therefore, the computer society is always trying to construct
viewpoint invariant description or models. The early attempts
focus on designing invariant features, like the SIFT, one of
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FIGURE 2. The overall proposed network architecture for 3D human pose estimation, which consists of a viewpoint transformation network and a 3D
human pose estimation network. The former is to transform a predicted 2D pose to a suitable viewpoint. Then, the transformed 2D pose is delivered to
the 3D pose estimation network, which outputs the final 3D pose estimation.

the most famous features. Besides the features, many view-
point invariant models are also developed. To solve the cross-
camera problem, especially the cameras from different an-
gles, [24] employs a Siamese architecture to learn a rotation
equivariant representation. Based on the adversarial learning,
a viewpoints transformation module is used to reduce the
difference in observation coordinate between 2D datasets
and 3D datasets [25]. In [26], view point transformation is
used to construct a self-supervised learning. [27] shows that
combination of 2D joint location and camera view point
can improve the performance. Yun et al. [12] analyzes the
robustness of 2D human pose estimation with respect to
rotational changes. However, their method focuses on the
view rotation around the vertical axis.

C. DYNAMIC ADAPTIVE NETWORK
As stated in the section I, dynamic adaptive networks are
proposed to deal with the large variation of input. Jia et al.
[28] propose the dynamic filter network, which can change
the parameters based on the input. In [29], a hypernetwork
is used to generate the weight of main network, which is a
relaxed form of parameters sharing. Shen et al. [30] employ a
meta-network to dynamically produce input-related parame-
ters, which improves the adaptability of the model to different
style. All these methods aim to use a network to generate
dynamic parameters, which are highly related to the input.
Therefore, the overall model can better adapt to the variation
of the input, which will lead to higher performance.

Different from the above methods, our dynamic network
is used to generate a transformation, which can transform the
predicted 2D human pose to a more appropriate viewpoint
for 3D pose recovery. The idea has some similarities with
[2], which adaptively transformed the 3D human skeleton to
the most suitable virtual observation viewpoints for skeleton
based action recognition. However, we focus on transforming
the 2D pose atomically for 3D human pose estimation, which
is highly different from the recognition task.

III. METHOD
As shown in Fig. 2, our method consists of two modules:
viewpoint transformation network and 3D human pose esti-

mation network. The former module transforms an original
2D pose to a suitable viewpoint, which depends on the input
pose and is learned from datasets. The latter module aims to
recover 3D pose from the transformed 2D pose.

A. VIEWPOINT TRANSFORMATION
The viewpoint transformation network is to transform the
input 2D pose to a suitable viewpoint for 3D human pose
estimation. As we all known, there exist six parameters for a
general 2D affine transformation, which can be divided into
translation, rotation, scale, skew and aspect ratio. However,
through some simple data normalization process, the pelvis
location of input 2D poses will be translated into the same
position, i.e. the origin of coordinate system. Besides, the
skew and aspect ratio transformation will change the relative
position of different human joints, which will not conform
to the original human poses structure. As a result, we just
employ the rotation and scale transformation. In other words,
our transformation matrix Tr can be represented as follow-
ing:

Tr =

[
s× cos(α) −s× sin(α)
s× sin(α) s× cos(α)

]
(1)

where s ∈ R is a factor for scale transformation and α is the
rotation angle.

As indicted in Eqn. (1), there are two parameters for
describing our transformation, i.e the scale factor and rotation
angle. Instead of designing some hand-crafted criteria, a deep
neural network is employed to generate these two parameters.
In theory, the scale factor should be larger than 0. However,
our actual experiments show that using too large range for
the scale factor will hurt the performance. On the other hand,
since the trigonometric function is periodic in rotation angle,
we can set the rotation angle in [0, 2π] for simplicity. Based
on these settings, we employ the sigmoid function to produce
the scale factor and rotation angle. In detail, our process for
producing the rotation angle and scale factor is defined as
following:

F = TrNet(P ; θt) (2)
s = β1 × sigmoid(F ) + β2 (3)

α = 2πsigmoid(F ) (4)
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where P ∈ R2×J is the 2D human pose predicted from
an image, J denotes the number of human joints. F ∈ R
represents the feature after the last linear layer of TrNet,
which is the network for generating the transformation pa-
rameters. And θt represents its corresponding parameters to
be learned. As shown in Eqn. (3), we use the sigmoid function
to generate the scale factor. To increase its range, we magnify
the range of scale factor to [β2, β1 + β2]. The value of β1
and β2 are chosen by experiments, which will be detailed in
experiment section. We also multiply the sigmoid result by
2π to make the rotation angle in [0, 2π].

The detailed architecture of this network is shown in left
part of Fig. 2. We can see the network is very simple. First,
the combination of linear layer, batch normalization, ReLU
and dropout is repeated several times to extract powerful
feature from the input pose. Then, a linear layer and two
sigmoid functions are use to produce the scale factor and
rotation angle respectively.

After obtained the transformation parameters, we can con-
struct the transformation matrix Tr according to Eqn. (1).
Then, the transformed human pose can be calculated as
following:

Pt = Tr ? P (5)

where Pt ∈ R2×J is the transformed 2D pose and ? denotes
the matrix multiplication.

B. 3D HUMAN POSE ESTIMATION
After obtained the transformed 2D pose, the next step is to
recover 3D human pose. In this paper, we employ the method
proposed in [9] to predict 3D pose due to its high efficiency.
Nevertheless, our method is not constricted to this specific
model. It is very easy to apply newly proposed 3D human
pose estimation method to further improve the performance.

The specific architecture of the 3D pose estimation net-
work [9] is shown in the right part of Fig. 2. Firstly, the
transformed 2D pose is projected to a 1024 dimension feature
through a linear layer. Then two residual blocks are used to
extract powerful features, each of which is the combination of
linear layer, batch normalization, ReLU and dropout. Finally,
a linear layer is used to produce the 3D human pose. As a
result, there are 6 linear layers. Like [9], this figure does not
contain the first layer applied to the input pose and the last
layer to generate the final 3D pose. Refer to [9] for more
details. Although it is not very deep, it has obtained excellent
performance in 3D pose estimation.

We train the overall network end-to-end without any pre-
train. All the parameter are initialized randomly using the
Kaiming normal method. To learn the parameters, we employ
the Euclidean distance between the predicted pose and the
ground-truth, which can be expressed as following

L =
1

N

N∑
n=1

1

J

J∑
j=1

‖Snj − Ŝnj ‖ (6)

where N is the number of training samples, Snj and Ŝnj are
the predicted 3D location and corresponding ground-truth for

j-th joint of n-th training sample respectively. ‖ · ‖ denotes
the Euclidean loss.

C. DISCUSSION
As stated in the section III-A, we just consider the trans-
formation consisting of scale and rotation. Is this the best
transformation? To answer this question, we will conduct
experiments by using different kinds of transformation. To
facilitate subsequent discussion, we give the representation
of a general 2D affine transformation in advance. There
exist four parameters for a general transformation without
translation. In detail, its transformation matrix can be denoted
as following

Tr =

[
a b
c d

]
(7)

where a, b, c and d are the transformation parameters.
Compared with Eqn. (1), this equation contains extra skew
and aspect ratio transformation. This transformation is more
free, but the relative location may be changed through this
transformation, which may affect the performance of human
pose estimation. We will compare the effect of different
transformation in the experimental section.

As shown in [9], it obtains better estimation performance
by using camera coordinate frame for both 2D pose and 3D
pose. After the transformation, the 2D pose will be in a new
coordinate, which maybe lead the 3D pose in this coordinate
rather than camera coordinate. Thus, it may hurt the perfor-
mance if we directly optimize the distance between these
two poses in different coordinates. To address this problem,
we can transform the predicted 3D pose back to camera
coordinate. Actually, this is the inverse transformation of
Eqn. (7). After some mathematical operation, the inverse
transformation can be represented as following

S = Tinv ∗ St (8)

Tinv =
1

ad− bc

 d −b 0
−c a 1
0 0 1

 (9)

where St ∈ R3×J is the output of 3D pose estimation
network, S is the final prediction, Tinv ∈ R3×3 is the matrix
for inverse transformation. Since the original transforma-
tion is in 2D space, the inverse transformation also acts on
2D space instead of 3D space. In other words, the depth
component of joints’ location is kept the same. Based on
the general formula (9), it is very easy to get the inverse
matrix for all kinds of transformation. So we will not give
the specific inverse matrix for other kinds of transformation
for simplicity.

IV. EXPERIMENTAL RESULTS
This section first introduces the datasets, evaluation metric
and some implementation details. Then we analyze the influ-
ence of the network architecture, different transformation and
some other parameters. Finally, we compare the proposed
method with several similar methods and show some sample
results.
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A. DATASETS AND EVALUATION METRIC
We mainly focus the numerical evaluation on Human3.6M
dataset [17], which is widely used for testing 3D human pose
estimation methods. To show the performance of our method
on unconstrained environments, we also use the MPII dataset
[18].

Human3.6M is currently the largest and widely used
dataset for 3D human pose estimation. It is collected in a lab
environment, where a person is performing 15 daily activities
such as eating, walking, sitting and so on. In total, there
are 11 professional subjects, which results in 3.6 million
images. For each image, the person bounding box, 2D image
coordinate of joints are annotated by human while the 3D
positions are gathered by sensors. Refer to [17] for more
details. MPII dataset [18] is one of the largest datasets for
evaluating 2D human pose estimation methods, which covers
a larger range of pose and appearance variation. Since there
is no ground-truth 3D pose in the MPII dataset, we just give
some qualitative results to demonstrate the performance of
our method on the wild images.

For fair comparison with previous works, we follow the
standard protocol, which uses subjects 1, 5, 6, 7 and 8 for
training, and subjects 9 and 11 for testing. As in [9], we train
a single model for all actions. We report the Mean Per Joint
Position Error (MJPE) between our prediction and the ground
truth across all joints and cameras. There are two different
protocols for calculating the MJPE. In protocol #1, the root
joint (central hip) is just aligned through 3D translation. In
contrast, a rigid transformation is used to align the predicted
3D pose with the ground truth in protocol #2.

B. IMPLEMENTATION DETAILS
We use the Pytorch V1.3.1 to implement the proposed net-
work. The batchsize for training is set to 128. The initial
learning rate is set to 1 × 10−4 and decayed every 100,000
iterations according to the exp decay rule of Pytorch. The
network parameters are initialized randomly using the Kaim-
ing normal method, which are then optimized by the Adam
method. The maximum epoch number is 400. On our ma-
chine with an Nvidia 2080Ti GPU, the training of our method
takes about 48 hours. Like Martinez et al. [9], we take the
2D pose estimated by a fine-tuned stacked hourglass 2D pose
detector as input unless otherwise stated.

C. INFLUENCE OF THE VIEWPOINT TRANSFORMATION
NETWORK ARCHITECTURE
We propose to transform a 2D pose to a more suitable
viewpoint and then estimate its corresponding 3D human
pose from this transformed 2D pose. Hence, the specific
configuration of network architecture, which is to generate
the viewpoint transformation matrix, plays an important role
in improving the performance of 3D human pose estimation.
To investigate its influence, we conducted experiments using
different network architectures while other things are kept the
same. For simplicity, we only use protocol #1 to evaluate the
results.

TABLE 1. Influence of the network architecture for generating view
transformation on Human3.6M dataset using protocol #1. Conv M ×N
refers to the network containing N fully connected layers, each of which
contains M neurons. Res means that the residual connection is used.
See text for more details

Network MJPE Error(mm) # Parameters(M)

Martinez et al. [9] 62.9 4.30
Conv 256 × 2 60.54 4.37
Conv 256 × 3 60.59 4.43
Conv 256 × 4 60.63 4.50
Conv 256 × 5 60.38 4.57
Conv 256 × 6 60.48 4.63
Conv 256 × 7 60.82 4.70

Conv 32 × 5 60.69 4.30
Conv 64 × 5 60.73 4.31
Conv 128 × 5 60.70 4.36
Conv 512 × 5 60.69 5.36

Res 32 × 2 60.70 4.30
Res 64 × 2 60.49 4.31
Res 128 × 2 60.43 4.36
Res 256 × 2 60.64 4.57
Res 512 × 2 60.78 5.36

Res 128 × 1 60.65 4.33
Res 128 × 3 60.49 4.40

The experimental results using different architectures are
listed in Table 1. The first line denoted as "Martinez et al. [9]"
is the baseline model without any viewpoint transformation
module. The remaining lines give the results of methods us-
ing different viewpoint transformation network architecture.
Conv M × N refers to the network composed of N units,
each of which contains a combination of a fully connected
layer with M neurons, batch normalization, ReLU and a
dropout layer. For simplicity, we set the number of neurons
in each fully connected layer to be the same. Note that the
last linear is not included in the Conv M ×N and is kept the
same in all the architectures. We can see that the performance
is increasing when the number of fully connected layers
is less than 5. When it is bigger than 5, the performance
declines. We also compare the performance using different
number of neurons in each layers. Specifically, we set it to
be 32, 64, 128, 256 and 512. As shown in Table 1, the MJPE
error achieves the lowest when it equals 256. Due to the over-
fitting, the performance degrades using more neuron or more
layers.

Recently, the residual connection achieves huge success in
many fields. Therefore, we validate whether using residual
connection can improve the performance. For simplicity,
we employ the same residual units in [9], whose specific
architecture is shown in the left part of Fig. 2. The bottom
lines of Table 1 gives the influence of the number of residual
connection layers and its neurons. Res M × N refers to
the network composed of N residual units, whose fully
connected layer containsM neurons. From this table, we can
find the MJPE error reaches the minimum 60.43 mm when
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TABLE 2. Comparison results of our method with other methods on Human3.6M dataset using protocol #1. Numbers are the MJPE error (mm). FT
refers that the papers use H3.6M to fine-tune the 2D detector model. GT denotes that the ground-truth 2D locations are used. For all methods, a single
model is trained for all actions.

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD Walk WalkT Avg

Zhou et al. [20] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Zhou et al. [31] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Pavlakos et al. [21] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Martinez et al. [9](FT) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Véges et al. [24] (FT) 50.1 54.7 56.0 56.5 67.7 76.4 53.1 54.7 73.3 93.2 60.4 58.5 62.8 51.5 48.2 61.1
Guo et al. [22] (FT) 49.4 54.3 55.7 56.9 66.4 74.5 53.2 55.4 71.7 89.0 60.0 57.0 62.7 48.0 50.7 60.6
Ours(FT) 49.6 54.6 57.0 57.2 65.2 74.7 53.0 55.4 71.3 89.0 59.7 57.5 62.8 47.7 50.9 60.4
Martinez et al. [9](GT) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Ours(GT) 35.3 41.9 38.4 39.5 42.9 50.6 42.9 37.5 50.3 52.8 41.6 42.1 42.2 32.4 35.8 41.8

TABLE 3. Effects of different kinds of transformation on Human3.6M
dataset using protocol #1.

Transformation Rot Sca Rot+Sca Aff
MJPE Error(mm) 61.47 61.85 60.38 61.34
Transformation Rot+Invs Sca+Invs Rot+Sca+Invs Aff+Invs
MJPE Error(mm) 61.40 61.42 61.25 64.07

the number of residual connection and neurons equals 2 and
128 respectively. Other settings will hurt the pose estimation
performance. For example, the MJPE error increases to 60.64
mm if 256 neurons are used rather than 128.

Besides, we also give the number of parameters for all
models. Compared with the baseline, the total number of
parameters dose not increases almost. In terms of normal
connection or residual connection, the normal connection
obtains a little better performance. In the following exper-
iments, we will utilize the network composed of 5 fully
connected layers within 256 neurons.

D. EFFECTS OF DIFFERENT KINDS OF VIEWPOINT
TRANSFORMATION
As stated before, there exist several different kinds of trans-
formation, like rotation, scale and affine. So which one is
the most suitable for our method? To address this doubt,
we have done different experiments using different kinds
of transformation. For simplicity, we use the same network
architecture, which consists of 5 fully connected layers with
256 neurons. The difference lies in the output of this network.
The output are rotation angle, scale factor, rotation angle
and scale factor, and four values for rotation, scale, the
combination of rotation and scale, and affine respectively.
Then, these values are used to construct the transformation
matrix, which is used to produce the transformed 2D pose as
shown in Eqn. (5)

Table 3 gives the results of different experiments. In this
table, the ’Rot’, ’Sca’, ’Rot+Sca’ and ’Aff’ denote the ro-
tation, scale, the combination of rotation and scale, and the
affine transformation respectively. From the first line of Table
3, we find the combination of rotation and scale gets the
best performance. Although the affine transformation is more

TABLE 4. Influence of the scale parameters β1 and β2 on Human3.6M
dataset using protocol #1.

β1 1 1.5 1.5 10
β2 0 0 0.25 0.25
Range [0, 1] [0, 1.5] [0.25, 1.75] [0.25, 10.25]
MJPE Error(mm) 60.78 60.77 60.38 60.63

general, it can not preserve the angle between different limbs,
which leads to the performance reduction.

In the second line of Table 3, we give the results of
transformation adding an inverse 2D transformation as shown
in Eqn. (8). When using rotation or scale individually, the
performance improves a little. For the affine or the combi-
nation of rotation and scale, the performance declines. In
our opinion, the inverse 2D transformation may not be very
accurate especially for complex transformation. Due to this
result, we will employ the ’Rot+Sca’ for comparison in the
following experiments.

As stated in Eqn. (3), there are two parameters β1 and β2,
which is to map the scale factor to a new range instead of
[0, 1]. Table 4 gives the influence of these two parameters
on the 3D pose estimation performance. We can find the
performance achieves the best using 1.5, 0.25 for β1 and
β2 respectively. Compared the fourth with the fifth column,
too larger range for scale factor will result in performance
reduction. Therefore, we set the β1 and β2 to 1.5, 0.25, which
maps the range of scale factor to [0.25, 1.75].

E. COMPARISONS WITH SIMILAR METHODS
In this section, we compare our method with several other
3D human pose estimation methods under two protocols.
Our method is to recover the 3D pose only using an 2D
prediction. The appearance or temporal information from
images or videos is not used. Therefore, we only use the
methods belonging to the same category for fair comparison.
In other words, all the methods compared in this section is
to recover the 3D pose only from a 2D pose instead of an
image. Besides, our method can be further enhanced by other
tools, like the generative adversarial network, graph neural
network, but this paper focuses on the viewpoint transfor-
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TABLE 5. Comparison results of our method with other methods on Human3.6M dataset using protocol #2. Numbers are the MJPE error (mm). We
takes the predictions by a fine-tuned stacked hourglass [11] as input and only train a single model for all actions.

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD Walk WalkT Avg

Bogo et al. [32] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Moreno-Noguer [33] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0
Pavlakos et al. [21] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Martinez et al. [9] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Véges et al. [24] 42.2 44.8 47.5 47.6 54.8 57.8 42.2 40.8 60.5 69.8 50.8 47.4 51.1 44.3 40.0 49.4
Guo et al. [22] 38.8 42.1 44.4 46.0 49.8 53.4 40.5 39.3 54.5 63.5 47.6 43.2 48.6 36.6 41.5 46.5
Ours 39.3 43.2 45.6 46.6 50.1 54.0 41.3 40.0 54.8 65.2 48.4 44.5 49.0 37.7 43.1 46.9

FIGURE 3. Some sample human pose estimation results on the images from the test part of Human3.6M dataset. The 2D pose estimated from a image is
in the square. The 3D GT pose in the one in red and blue. Our 3D prediction is the one in green and purple.

mation rather than other tools. So we will not compare our
method with these method as well. Therefore, the compared
methods include Zhou et al. [20], Zhou et al. [31], Pavlakos et
al. [21], Martinez et al. [9], Véges et al. [24], Guo et al. [22],
Bogo et al. [32] and Moreno-Noguer [33]. For simplicity, we
directly cite the scores reported in the original papers.

The MJPE scores of all methods under protocol #1 and
#2 are shown in the Table 2 and 5 respectively. Note that
the recent methods [9], [22], [24] use the 2D pose detections
by the fine-tuned Stacked Hourglass model [11] as input. To
show the limit of our method, we also give the performance
using the ground-truth 2D pose in Table 2, which is denoted
as GT. We can find our method obtains the best performance
under protocol #1. Under protocol #2, the MJPE error is
very close to the best method. Compared with our baseline
Martinez et al. [9], the average MJPE error reduces 2.5 mm
and 0.8 mm under protocol #1 and #2 respectively. The

performance gain under protocol #1 is larger than that of
protocol #2. Comparing the performance gain between our
method and Martinez et al. when using the predicted 2D
pose or the ground-truth pose, we can see that the gain is
larger when ground-truth 2D poses are used. This indicates
our method may obtain better performance if more accurate
pose prediction is input.

F. VISUALIZATION RESULTS
Finally, we give some qualitative results on Human3.6M
dataset and MPII dataset. First, we show some sample results
from Human3.6M dataset in Fig 3. In this figure, the 2D
poses estimated from images are in the right. The ground-
truth and our predicted 3D human pose are show in the
middle and left respectively. Note that these samples are
chosen randomly from the test set of Human3.6M dataset.
From this figure, we can see our pose estimation results are
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FIGURE 4. Some sample 3D human pose estimation results on the MPII dataset. Left: the input images superposed with 2D pose prediction by Stacked
Hourglass model. Middle: 2D pose prediction. Right: our 3D predictions. The top three rows are the right results while the last row shows the failure
examples.

highly accorded with the ground-truth 3D pose for all actions.
In some samples, our prediction maybe not completely match
the ground-truth, especially the angle between upper leg and
lower leg, like the third example in the fifth row. This is
caused by the inaccurate 2D pose estimation or the view-
point. For example, in this sample, it is difficult for human
to perceive the angle from the 2D pose in this viewpoint.
Nevertheless, our prediction is right in most cases. These
visualization results verify the effectiveness of our proposed
method in lab environment.

To illustrate the performance of our method on images
captured in the wild, we have given some sample estimation
results on the MPII dataset in Fig. 4. In this figure, the
cropped images overlapped with predicted 2D poses by the
stacked hourglass model [11] is shown in the right. The 2D
pose prediction and our 3D pose estimation results are shown
in the middle and left part respectively. Note that the cropped
images are just the input of stacked hourglass model. For
clear, we use white color to visualize the padding added in the
cropping process. Note that we directly use the model trained
on Human3.6M instead of training a new model. From Fig.
4, we can find that our method can produce reasonable 3D
pose prediction for most cases, although the model dose not
see the 2D poses before. For example, our method obtains
right prediction for upside-down people which is not similar
to any images in Human3.6M dataset. Some failure examples
are shown in the last row. This is mainly caused by the false
2D pose prediction. Since our method just takes the 2D pose
as input, it can only make prediction based on this input.
Therefore, some false results are generated if the 2D pose is
not right. Besides, since our method is trained on full body,
it will also fail if some joints are missing in the 2D pose

prediction. Nevertheless, the predicted 3D poses conform to
the input 2D poses.

V. CONCLUSION
In this paper, an adaptive viewpoint transformation network
is proposed for 3D human pose estimation. The overall
process can be divided into two parts. Given the 2D pose
predicted from an image, the first part produces a viewpoint
transformation, which is used to transform the 2D pose to
a more suitable viewpoint. Next, the 3D human pose is
recovered from the transformed 2D pose. In contrast to hand-
crafted criteria, our viewpoint transformation module is di-
rectly learned from the dataset. In inference, it only depends
on the input 2D pose. Compared with the original 2D pose,
the difficulty of 3D human pose recovery from transformed
2D pose is much smaller. As a result, our method can get bet-
ter results. Experiments on Human3.6M and MPII datasets
show the proposed method can improve the performance of
3D human pose estimation.

This paper mainly focuses on learning a suitable viewpoint
transformation from 2D pose prediction, whose information
may not be very sufficient. In the future, we will study how
to combine the original image and its corresponding 2D pose
prediction to learn a more accurate transformation to further
improve the performance. Moreover, we will also investigate
the application of viewpoint transformation in more fields,
such as 2D human pose estimation, action recognition.
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