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a b s t r a c t 

With the emergence of large-scale datasets and deep learning systems, person re-identification(Re-ID) 

has made many significant breakthroughs. Meanwhile, Visible-Thermal person re-identification(V-T Re-ID) 

between visible and thermal images has also received ever-increasing attention. However, most of typical 

visible-visible person re-identification(V-V Re-ID) algorithms are difficult to be directly applied to the 

task of V-T Re-ID, due to the large cross-modality intra-class and inter-class variation. In this paper, we 

build an end-to-end dual-path spatial-structure-preserving common space network to transfer some V-V 

Re-ID methods to V-T Re-ID domain effectively. The framework mainly consists of two parts: a modility 

specific feature embedding network and a common feature space. Benefiting from the common space, 

our framework can abstract attentive common information by learning local feature representations for 

V-T Re-ID. We conduct extensive experiments on the publicly available RGB-IR re-ID benchmark datasets, 

SYSUMM01 and RegDB, for demonstration of the effectiveness of bridging the gap between V-V Re-ID and 

V-T Re-ID. Experimental results achieves the state-of-the-art performance. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Person re-identification (Re-ID) aims to re-identify the same 

ndividual from non-overlapping camera views, which has great 

alue in video surveillance. During the past few years, a large num- 

er of algorithms have been proposed to tackle visible-visible per- 

on re-identification (V-V Re-ID) problems [1–3] where both query 

mages and gallery images are captured by RGB cameras. Mean- 

hile, many surveillance cameras support automatic switching be- 

ween visible and infrared working modes to fit the surrounding il- 

umination variations. Therefore, the need for cross-modality Re-ID 

ethods [4,5] , especially Visible-Thermal person re-identification 

V-T Re-ID), to find the same person captured by other spectrum 

ameras are rising. 

Although V-V Re-ID problems are properly studied, V-T Re-ID 

roblems remain challenging. Recently, multifarious methods have 

een proposed for V-V Re-ID, including metric learning [3] , fea- 

ure learning [6] and GAN-based learning [7] . Meanwhile, due to 

he large cross-modality discrepancy resulting from imaging sen- 

ors and intra-modality appearance discrepancy influenced by il- 

umination, background, pose and viewpoint variations, V-T Re-ID 
∗ Corresponding author. 
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ask is still a great challenge up to now. Researchers invest lots of 

nergy in devising exquisite network to extract modality-invariant 

nformation to represent the feature while ignoring the relation- 

hip between V-V Re-ID and V-T Re-ID. It is urgent but promising 

o bridge the gap between the two similar tasks. 

Generally speaking, the techniques to handle V-V Re-ID are 

uite mature and great performance has been demonstrated in the 

-V Re-ID benchmark datasets. However, it lacks appropriate meth- 

ds to transfer these powerful techniques to V-T Re-ID domain. In 

he field of cross-modal retrieval, the multi-path feature learning 

etwork, which contain two subnetworks linked at the joint layer 

or correlating the data of different modalities, has always been 

 common approach to bridge the gap between different modali- 

ies. [8] Motivated by the multi-path network, a popular pipeline 

hich includes feature extraction phase and feature embedding 

hase is introduced to tackle the problem. For feature extraction 

hase, a multi-branch architecture is adopted to extract modality- 

pecific feature vectors firstly, and for feature embedding phase, 

 mapping function is then adopted to project the modality spe- 

ific features into a common feature space. Concretely, the model 

ranches used to extract modality specific features are not required 

o have same architectures or share parameters necessarily, as op- 

imal feature extraction model highly depends on the input data 

odalities. Note that in the feature extraction phase, the modal- 

ty specific feature is usually processed into a 1D-shaped vector 
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nd the mapping function is typically devised as one or several 

ully-connected layers to project the modality specific feature vec- 

ors, leading to a common feature space which loses the spatial 

tructure information as it is spanned by 1D-shaped feature vec- 

ors. By utilizing this pipeline, we drives the feature into a 3D ten- 

or common space, which preserves structure information to re- 

uce the gap between V-V Re-ID and V-T Re-ID. 

Besides, we mainly exploit parted-based Re-ID methods, such as 

CB [9] , HPM [10] , MGN [11] et al., to verify the effectiveness of the

ipeline, since part-level features provide better person represen- 

ations than a global one. Intuitively, these parted-based methods 

an project the features from different modalities into the same 

ubspace to capture more detailed common information, which is 

asily applied to V-T Re-ID. 

The main contributions of are summarized as follows: 

• We bridge the gap between V-V Re-ID and V-T Re-ID and apply 

methods utilized for V-V Re-ID to V-T Re-ID effectively. 
• We design a Dual-path Spatial-structure-preserving Common 

Space Network (DSCSN) to embedding cross-modality images 

into a 3D common feature space. With the 3D common space, 

which preserves the intrinsic spatial structure, we can reduce 

the modality gap easily. 
• Part-based Re-ID methods are also explored to verify the effec- 

tiveness of our proposed model. 

Extensive experiments on the popular SYSU-MM01 and RegDB 

atasets demonstrate that DSCSN is superior to traditional dual- 

ath architectures for RGB-IR ReID and our proposed approach out- 

erforms competitive algorithms. 

. Related works 

.1. V-V person re-identification 

V-V Re-ID task addresses the problem of matching pedestrian 

GB images across disjoint visible cameras, which suffers from the 

ifficulties of large intra-class variation due to illumination, back- 

round, pose, and viewpoint variations. Exiting methods could be 

rouped into three categories: hand-craft feature representation, 

istance metric learning, and deep learning. An exquisite hand- 

raft feature is extracted to improve discrimination. For exam- 

le, Yang et al. [2] introduced the salient color names based color 

escriptor (SCNCD) for global pedestrian color descriptions. The 

oal of metric learning is to keep all the vectors of the same 

lass closer while pushing vectors of different classes further apart. 

ome endeavors learned a Mahalanobis distance function [1] , or 

rojection matrix [3] . Unlike traditional methods, deep learning 

ased methods can automatically extract better pedestrian image 

eatures and obtain better similarity measurement in an end-to- 

nd manner. Because there is a large gap between RGB domains 

nd IR domains, most of exiting methods perform well in V-V Re- 

D task may not directly achieve the corresponding performance in 

-T Re-ID. 

.2. V-T person re-identification 

Cross-modality retrieval [4] refers to searching instances across 

ifferent modality data. Especially for V-T Re-ID task, it is quite 

hallenging due to cross-modality variation between RGB and IR 

mages and has attracted extensive research focus on to date. 

n [12] , Wu et al. firstly defined the problem of cross-modality 

erson Re-ID, and provided the first RGB-IR cross modality Re- 

D dataset named SYSU-MM01 for the community. Based on the 

ataset, they explored three different network structures with 

ero-padding for automatically evolving domain-specific structure 
26 
or RGB-IR matching. Ye et al. [5] proposed a hierarchical met- 

ic learning method called HCML to jointly optimize the modality- 

pecific and modality-shared metrics. Ye et al. [13] further utilized 

 dual-path network with a bi-directional dual constrained top- 

anking loss that ensures the learnt feature representations are dis- 

riminative enough. In [14] , Dai et al. introduced a cross-modality 

enerative adversarial network (cmGAN) to handle the lack of in- 

ufficient discriminative information. Hao et al. [15] introduced 

phere Softmax to learn a hypersphere manifold embedding and 

onstrain the intra-modality variations and cross-modality varia- 

ions on this hypersphere. Very recently, some GAN based do- 

ain adaptation methods were proposed to generate correspond- 

ng visible or infrared images. In [16] , Wang et al. proposed a 

ovel Alignment Generative Adversarial Network (AlignGAN) to si- 

ultaneously alleviate the cross-modality variation in the pixel 

pace, the intra-modality variation in the feature space. Mean- 

hile, Wang et al. [7] generated cross-modality paired-images by 

isentangling features and decoding from exchanged features. Most 

bove methods design exquisite framework to reduce the gap be- 

ween the cross-modality data. In our method, we apply typical 

art-based V-V Re-ID algorithm to V-T Re-ID domain via building 

 3D shaped tensor common space. 

.3. Local feature representation learning for person re-identification 

Local feature representation learning aims to learn an effec- 

ive feature extractor to capture abundant discriminative features 

f various body parts and has show promising performances. Gen- 

rally, these methods can be classified into three categories: The 

rst approach leverages explicit pose estimation to obtain a human 

ody pose map [17] . Nevertheless, this requires an additional hu- 

an pose estimation data to train an accurate estimator at first. 

he second approach utilizes an attention map [18,19] to lever- 

ge body parts implicitly, but the attended regions may not con- 

ain discriminative body parts. The third approach directly utilizes 

he predefined rigid parts (horizontal stripes or grids) [9,20,21] for 

ne-grained feature extraction, which may be less effective when 

he detectors do not localize the persons tightly. We adopt 

he 3rd approach to extract modality-invariant and modality- 

haring local feature for V-T Re-ID due to its operability and 

racticability. 

. Method 

In this section, we elaborate the framework of the proposed 

eature learning method for V-T person Re-ID. The framework 

earns common feature representations by projecting two modal- 

ties into a spatial-structure-preserving common space. Typical V- 

 Re-ID algorithms can be effectively applied to V-T Re-ID by 

uilding up the common space. Meanwhile, local feature extrac- 

ion module is embedded to this framework to learn the modality- 

nvariant feature representation captured by the common space to 

btain discriminative information. As shown in Fig. 1 , it comprises 

wo main components: a Dual-path Spatial-structure-preserving 

ommon Space Network (DSCSN) and a local feature learning net- 

ork. 

.1. Dual-path spatial-structure-preserving common space network 

A dual-path spatial-structure-preserving common space net- 

ork is designed to extract common features with the shape of 

D convolution feature maps for the input RGB and IR images. It 

onsists of two branches, a RGB-branch and an IR-branch, and both 

ranches are designed with same network structures. Note that it 

ainly contains two steps: modality specific feature extraction and 

ommon feature embedding. The feature extraction step focuses 
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Modality-specific
feature extraction

Common space
feature embedding

ID predictions

Dual-path Spatial-structure-preserving Common Space Network Local discriminative feature learning

Part-based models

Input stem Stage1 Stage2 Stage3 Stage4 Pooling FC

Residual

Residual

Downsampling

Stage1~4
Input

Output

MaxPool
3x3,s=2

Conv
7x7,64,s=2

Input stem
Input

Output

Fig. 1. The pipeline of our proposed framework for V-T person ReID. The end-to-end framework consists of two parts, DSCSN and local feature learning, with the former 

part embeds modility specific feature into common space and the latter one learns discriminative local features. 
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n extracting modality specific information for different modalities, 

nd the feature embedding step aims to learn common features of 

GB and IR image modalities. 

As shown in Fig. 1 , RGB and IR images are fed into the Dual-

ath Spatial-structure-preserving Common Space Network sepa- 

ately. The low-level layers without sharing parameters, which con- 

ists of the input stem, stage 1, and stage 2 of ResNet-50, are 

esigned as the feature extraction part to extract the modality- 

pecific features. After that, convolution architectures with shared 

arameters on top of feature extraction part are treated as a com- 

on feature embedding function to project the modality-specific 

nputs into a common space spanned by 3D convolution feature 

aps. Specially, stage 3 and stage 4 of ResNet-50 are treated as the 

onvolution architectures. To clarify, C R (·) and C I (·) are denoted as 

ransformation functions from the input images to common space 

eatures for RGB images and IR images respectively. Given an RGB 

mage R and an IR image I, the extracted 3D common features F R 
nd F I are represented by 

 R = C R (R ) ∈ R 

h F ×w F ×c F 

 I = C I (I) ∈ R 

h F ×w F ×c F 
(1) 

here h F , w F and c F are the height, width, and number of chan-

els respectively. 

It is worth mentioning that different from dual-path network 

roposed in [13] , which introduces a shared fully connected layer 

s feature embedding function acting on 1D feature vectors, our 

eature embedding adopts convolutional architectures and acts on 

D feature tensors. The proposed network can preserve some spa- 

ial structure information for the common space. We will demon- 

trate the effectiveness of the 3D shaped tensor common space, 

here the gap between V-V Re-ID and V-T Re-ID can be easily 

ridged. 
27 
.2. Local feature representation learning network 

Local feature learning has shown great promising prospects for 

-V ReID while not widely utilized for V-T ReID. A typical ap- 

roach is to directly utilize the predefined rigid parts (horizontal 

tripes or grids) [9,20] for fine-grained feature extraction. Simi- 

ar to these methods, we introduce part-based module after com- 

on feature embedding step to extract common local feature be- 

ween RGB and IR images. Specifically, as shown in Fig. 1 , af- 

er extracting modality-invariant common features with the shape 

f 3D convolution feature maps by DSCSN, we partition spatial- 

tructure-preserving feature maps F m 

(m ∈ { R, I} ) into p horizontal 

rids h i m 

(i ∈ 1 , 2 , . . . p) to extract local feature which is concate-

ated to represent the body structure. Then each grid is averaged 

nto a local feature vector with global average pooling(GAP). Af- 

erwards, a convolutional layer is employed to reduce the dimen- 

ion. Finally, each dimension-reduced column vector is put into a 

lassifier, which is composed of a fully-connected (FC) layer with a 

ollowing Softmax function. The classifier aims to transfer the fea- 

ure vector into the class scores s ∈ R 

1 ×C to predict the identity of 

GB or IR image individually. Here C is the ID number in training 

lasses. The above procedure can be formulated as 

 

i 
m 

= Sof tmax (F C(CONV (GAP (h 

i 
m 

)))) (2) 

Since the model can obtain better discrimination ability in iden- 

ifying the whole body considering the similarity of each grid, we 

ompute the overall loss function via averaging the loss of different 

rids, which is defined as follows: 

 = 

p ∑ 

i =1 

L i , (3) 

ith 

 i = − 1 

2 N 

[ ∑ 

R i 

C ∑ 

c=1 

y c R i log s c R i + 

∑ 

I i 

C ∑ 

c=1 

y c I i log s c I i 

] 

(4) 
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Fig. 2. The typical ResNet-50 model [26] . 
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here N is the number of samples for each modality and p is the 

umber of horizontal grids. y R and y I are one-hot coding ID labels 

or R and I respectively. s R and s I are the predicted label probability 

istributions of R and I. 

Moreover, we also explore other part-based methods whose ef- 

cacy has been verified in V-V Re-ID domian. Horizontal Pyra- 

id Matching (HPM) [10] approach learns to classify using par- 

ial feature representations at different horizontal pyramid scales. 

ultiple Granularity Network (MGN) [11] is a multi-branch deep 

etwork architecture consisting of two branches for local feature 

epresentations and one branch for global feature representations. 

arameter-Free Spatial Attention Network (SA) [22] utilizes six in- 

ependent losses for each local region and takes the summation 

f all six losses as the final loss. Most of models like these can be

asily applied to V-T Re-ID benefitting from the common space ex- 

lained in the previous section. Detailed experimental results can 

e found in next section. 

. Experimental results 

In this section, we conduct comprehensive experiments to ver- 

fy the efficacy of the proposed cross-modality framework as well 

s show the performance of other part-based methods. 

.1. Datasets and settings 

SYSU-MM01 As a standard benchmark for cross-modality (RGB- 

R) Re-ID, the SYSU-MM01 [23] RGB-IR Re-ID dataset is chosen to 

erify the efficacy of the proposed method. This dataset is col- 

ected by 6 cameras, including 4 visible cameras and 2 thermal 

nes. It contains 491 available identities with total 287,628 RGB 

mages and 15,792 IR ones, and each person is captured by at least 

wo different spectrum cameras. The dataset is separated into the 

raining set and the test set, where images of the same person can 

nly appear in either set. The training set contains 395 persons in- 

luding 22,258 visible images and 11,909 thermal images and the 

esting images with 96 IDs. It brings great difficulty that some of 

he person images are captured in the indoor environments and 

ome are in outdoor environments, and the variation between two 

odalities makes the dataset more challenging. 

RegDB We also perform experiments on another publicly avail- 

ble dataset called RegDB [24] , which consists of 4120 visible im- 

ges and 4120 thermal images in total. A pair of aligned visible 

nd infrared cameras are used to capture these paired images of 

12 volunteers. Following the evaluation protocol adopted in Wang 

t al. [25] , we randomly split this dataset into two halves, one for 

raining and the other for testing. For testing, the query set consists 

f 2060 IR images and the gallery set contains 2060 RGB images. 

.2. Evaluation protocols 

We follow the evaluation protocols used in Wu et al. [12] to 

valuate our model on SYSU-MM01 dataset. There are two test 

odes, all-search mode and indoor-search mode. For the all-search 

ode, 3rd and 6th thermal cameras are for probe set and 1st, 

nd, 4th, 5th visible cameras are for gallery set. For the indoor- 

earch mode, 3rd and 6th thermal cameras are for probe set and 

nly 1st and 2nd visible cameras are for gallery set. Obviously, all- 

earch mode is more challenging than indoor-search mode, due to 

he scene diversity. For both modes, the single-shot and multi-shot 

ettings are adopted, where each identity contains 1 or 10 images 

andomly selected from the gallery set. Note that both modes use 

R images as probe set and RGB images as gallery set. 

Following [24] , we compute the average of 10 times repeated 

andom split of training and testing sets to obtain the results of 

egDB. For each image in the probe set, we compute the feature 
28 
imilarities between the IR image and every RGB image in the 

allery set to match the pedestrian. 

The Cumulative Matching Characteristic curve (CMC) and mean 

verage Precision(mAP) are adopted as evaluation metrics. 

.3. Implementation details 

We first resize all the images to 384 × 128 pixels, then random 

ropping and horizontal flipping are used to augment the training 

ata. At each iteration, we randomly select N person identities, and 

mage pairs with one RGB and one IR image are splatted into mini- 

atches. Thus, totally 2 × N images are fed into the network for 

raining at each iteration. We set N = 32 in our experiments. 

Then we choose pretrained ResNet-50 as the backbone architec- 

ure for the dual path network, which consists of multiple stages 

s in Fig. 2 . Concretely, the parameters are not shared for the in-

ut stem, stage 1, and stage 2 of ResNet-50 during the modality- 

pecific feature extraction step, while they are shared for the stage 

 and stage 4 which are treated as the feature embedding blocks. 

he output common feature of embedding blocks is equally split 

nto p = 6 grids. The dimension of feature vector is reduced to 256 

y the FC layer. 

During training, the stochastic gradient descent (SGD) optimizer 

s utilized for optimization. We set the maximum number of train- 

ng epochs to 40, and the initial learning rate to 0.1 which is then 

ecayed by 1 / 10 for the last 20 epochs. 

During testing, the final descriptor of the input RGB or IR image 

re formed by concatenating different horizontal grids. Afterwards, 

e compute similarities as the final scores between the query im- 

ge and gallery images using Cosine distance measurement. 

Lastly, all the experiments are executed on NVIDIA GeForce 

080Ti graphics cards with the Pytorch development package. 

.4. Comparison with state-of-the-art methods 

In this subsection, we evaluate our proposed algorithm us- 

ng the rank-1(r-1), r-10, r-20 accuracies of CMC and mAP met- 

ics. Comparative methods are current popular methods, like Zero- 

adding [12] , BDTR [13] , cm-GAN [14] , D 

2 RL [25] , HSME [15] ,

lignGAN [16] , JSIA-REID [7] . The results of comparison with 

tate-of-the-art methods on SYSU-MM01 and RegDB are listed in 

ables 1 and 2 respectively. 
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Table 1 

Comparison with state-of-the-art methods on SYSU-MM01(%). 

Method All-search Indoor-search 

Single-shot Multi-shot Single-shot Multi-shot 

r-1 r-10 r-20 mAP r-1 r-10 r-20 mAP r-1 r-10 r-20 mAP r-1 r-10 r-20 mAP 

HOG + Euclidean 2.8 18.3 31.9 4.2 3.8 22.8 37.6 2.2 3.2 24.7 44.5 7.3 4.8 29.1 49.4 3.5 

HOG + KISSME 2.1 16.2 29.1 3.5 2.8 18.2 31.3 2.0 3.1 25.5 46.5 7.4 4.1 29.3 50.6 3.6 

HOG + LFDA 2.3 18.6 33.4 4.4 3.8 20.5 35.8 2.2 2.4 24.1 45.5 6.9 3.4 25.3 45.1 3.2 

LOMO + CCA 2.4 18.2 32.5 4.2 2.6 19.7 34.8 2.2 4.1 30.6 52.5 8.8 4.9 34.4 57.3 4.5 

LOMO + CDFE 3.6 23.2 37.3 4.5 4.7 28.2 43.1 2.3 5.8 34.4 54.9 10.2 7.4 40.4 60.3 5.6 

LOMO + GAM 1.0 10.5 20.8 2.5 1.0 10.5 21.1 1.5 1.8 17.9 36.0 5.6 1.7 18.1 36.2 2.9 

GSM [27] 5.3 33.7 53.0 8.0 6.2 37.2 55.7 4.4 9.5 49.0 72.1 15.6 11.4 51.3 73.4 9.0 

One-stream Network [12] 12.0 49.7 66.7 13.7 16.3 58.1 75.1 8.6 16.9 63.6 82.1 23.0 22.6 71.7 87.8 15.0 

Two-stream Network [12] 11.7 48.0 65.5 12.9 16.3 58.4 74.5 8.0 15.6 61.2 81.0 21.5 22.5 72.2 88.6 13.9 

Zero-padding [12] 14.8 54.1 71.3 16.0 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6 

TONE [5] 12.5 50.7 68.6 14.4 – – – – – – – – – – – –

HCML [5] 14.3 53.2 69.2 16.2 – – – – – – – – – – – –

BDTR [13] 27.3 67.0 81.0 27.3 – – – – 31.9 77.2 89.3 41.9 – – – –

cmGAN [14] 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 81.0 92.1 32.8 

eBDTR [28] 27.8 67.3 81.3 28.4 – – – – 32.5 77.4 89.6 42.5 – – – –

D 

2 RL [25] 28.9 70.6 82.4 29.2 – – – – – – – – – – – –

HSME [15] 18.0 58.3 74.4 20.0 – – – – – – – – – – – –

D-HSME [15] 20.7 62.7 78.0 23.1 – – – – – – – – – – – –

JSIA-REID [7] 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7 

AlignGAN [16] 42.4 85.0 93.7 40.7 51 . 5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3 

Ours(Avg pool) 40.1 84.2 93.5 41.2 43.0 86.8 94.8 33.5 45.0 87.4 95.6 53.9 50.2 90.6 96.8 43.5 

Ours(Max pool) 46.4 88.5 95 . 8 46.3 50.3 90 . 5 97 . 1 38.9 48.6 89.7 92.3 57.9 58 . 2 94 . 5 98 . 6 50.0 

Ours(Avg&Max pool) 47 . 2 89 . 1 95 . 8 47 . 1 49.7 90.3 96.4 39 . 4 51 . 0 91 . 7 97 . 1 59 . 7 56.9 94 . 5 98 . 6 50 . 8 

Table 2 

Comparison with state-of-the-art methods on RegDB(%). 

Method r-1 r-10 r-20 mAP 

Zero-padding [12] 17.8 34.2 44.4 18.9 

TONE [5] 16.9 34.0 44.1 14.9 

HCML [5] 24.4 47.5 56.8 20.8 

BDTR [13] 33.5 58.4 67.5 31.8 

eBDTR [28] 31.8 56.1 66.8 33.2 

D 

2 RL [25] 43.4 66.1 76.3 44.1 

HSME [15] 41.3 65.2 75.1 38.8 

D-HSME [15] 50.9 73 . 4 81 . 7 47.0 

JSIA-REID [7] 48.1 – – 48.9 

AlignGAN [16] 56.3 – – 53.4 

Ours 59 . 0 70.0 79.2 62 . 5 
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Fig. 3. Sample retrieval results of our proposed method on the test set of SYSU- 

MM01. Query images are listed first, followed by Top-10 matches with descending 

confidence score (green box for same ID and red box for mismatches). 
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In Table 1 , The first column lists some mainstream methods 

n SYSU-MM01, including our methods on the bottom. Note that 

he bottom three rows show the performance of average pooling 

nly, max pooling only and both pooling strategies. The last two 

olumns refer to two test modes with two adopted shot settings 

entioned in Section 4.2 . Evaluation Protocols . 

From Table 1 , we can observe that traditional methods includ- 

ng HOG and LOMO are obviously surpassed by deep learning 

ethods. Overall, Our method with both pooling strategies signif- 

cantly outperforms all existing methods in any mode. Especially 

n the most difficult one, all-search single-shot mode, our method 

an outperform AlignGAN [16] by 4.8% rank-1 and 6.3% mAP re- 

pectively. 

In addition, from the bottom three rows in Table 1 , it can be

bserved that max pooling performs better than average pooling 

n most cases. As some researchers [10] have concluded, average 

ooling covers all locations of a particular parts, but it is easily 

istracted by background clutter and occlusion. Max pooling over- 

omes this problem by preserving the largest response values for a 

ocal view while discarding background clutter. Therefore, we also 

ntegrate these two strategies into a unified model to obtain bet- 

er feature representations. Experimental results in Table 1 show 

hat Ours(Avg&Max pool) outperforms Ours(Avg pool) by 7.1% rank-1 

nd 5.9% mAP respectively and outperforms Ours(Avg pool) by 0.8% 
29 
ank-1 and 0.8% mAP respectively in all-search single-shot mode. 

hus, it demonstrates that mixing the two pooling strategies per- 

orms better than using either of them. 

In Table 2 , our model still goes beyond many competitive mod- 

ls on RegDB dataset. Firstly, D 

2 RL [25] outperforms eBDTR [28] by 

1.6% rank-1 and 10.9% mAP scores, which demonstrates the ef- 

ectiveness of adversarial training. Secondly, D-HSME [15] outper- 

orms D 

2 RL [25] by 7.5% Rank1 and 2.9% mAP scores, implying the 

ffectiveness of metric learning. Additionally, AlignGAN [16] out- 

erforms D-HSME [15] by 5.4% Rank1 and 5.6% mAP scores, ver- 

fying that generative methods can alleviate the cross-modality 

ariation. Finally, Our method outperforms AlignGAN [16] by 2.7% 

ank1 and 9.1% mAP scores, which demonstrates the effectiveness 

f our method for V-T Re-ID task. 

In Fig. 3 , we give some examples of the SYSU-MM01 testing 

ase to demonstrate our method qualitatively. Some IR images 
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Table 3 

Results of other part-based models on SYSU-MM01 dataset. 

Method r-1 r-10 r-20 mAP 

HPM (Avg pool) 40.2 83.3 92.1 40.0 

HPM (Max pool) 46.0 86.8 94.1 45.1 

HPM (Avg&Max pool) 42.3 85.6 93.7 42.2 

MGN (Rank) 37.9 81.5 91.4 38.6 

MGN (ID) 36.5 80.2 91.0 39.6 

MGN (Rank&ID) 39.0 82.3 92.3 41.9 

SA 41.3 87.4 92.4 44.0 

AlignGAN (Part-based) 39.3 84.0 93.1 39.3 

Ours 47 . 2 89 . 1 95 . 8 47 . 1 

Table 4 

Effect of feature embedding on SYSU-MM01 and RegDB datasets. 

SYSU-MM01 RegDB 

Shared layers r-1 r-10 r-20 mAP r-1 r-10 r-20 mAP 

None-stage 0.9 10.4 21.6 3.2 1.1 2.7 4.6 2.1 

Stage 4 38.4 85.1 93.5 40.0 58.0 64.0 73.5 60.5 

Stage 3–4 47.2 89.1 95.8 47.1 59.0 70.0 79.2 62.5 

Stage 2–4 44.0 84.4 93.0 43.1 53.2 58.9 71.9 58.3 

Stage 1–4 42.9 86.6 94.6 44.0 57.4 68.1 73.6 60.2 

All 31.1 76.9 88.7 33.9 56.3 66.2 72.7 59.0 
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Fig. 4. Accuracy with different grid numbers. For different retrieval curves, varying 

p shows similar influence. And the performance comes best with p = 5 . 
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re selected as query images in first column, followed by Top- 

0 matches from RGB images with descending confidence score. 

he correct matching images are in the green rectangles, while 

he mismatches are in the red rectangles. From The retrieval re- 

ults, we can see that our method gets great shots and reduce the 

odality gap dramatically. 

.5. Comparison with other part-based models 

In addition to the method described above, we also attempt to 

dopt other part-based models to bridge the gap between V-V Re- 

D and V-T Re-ID. The results are shown in Table 3 , HPM [10] can

chieve 42.3% rank-1 and 42.2% mAP by mixing avg pooling and 

ax pooling strategies. MGN [11] can achieve 39.0% rank-1 and 

1.9% mAP by integrating rank loss and id loss. SA [22] can 

chieve 41.3% rank-1 and 44.0% mAP respectively. Part-based Align- 

AN [16] , which the network learns local feature representation, 

an attain a lower accuracy compared with the methods in the ta- 

le. Note that we adopt the most challenging single-shot all-search 

est mode to compare these methods. 

In general, although these methods can not achieve the state- 

f-art accuracy, benefitting from the spatial-structure-preserving 

ommon space, they still perform well in V-T Re-ID domain. 

.6. Discussion 

Effect of feature embedding function It is a key step for V-T 

e-ID to choose appropriate feature embedding function. Previous 

eature embedding methods [5,13] aim to project the modality- 

pecific feature vectors into the common feature space by utilizing 

 fully connected layer, which leads to lack of enough body struc- 

ure information of final feature representation. However, we de- 

ign the feature embedding function as convolution architectures 

o build a 3D tensor common space, which is beneficial to trans- 

erring models used for V-V Re-ID to V-T Re-ID due to more abun- 

ant information. Specially, we view parameter sharing parts of 

esNet-50 as the feature embedding function. Table 4 demonstrate 

ow the feature embedding function affects the V-T Re-ID perfor- 

ance. In Table 4 , we can observe that when stage 3 and stage 4 of

esNet-50 are designed as feature embedding function, it achieves 

est results. Note that ‘None-stage’ means only parameters of fully- 
30 
onnected layer are shared, that is traditional dual-path architec- 

ures [13] and ’None’ means no parameters are shared. 

The number of grids p For V-V Re-ID, the number of grids de- 

ermines the granularity of local feature which affects the discrim- 

nation. We evaluate the number effect and the results are shown 

n Fig. 4 . As p increases, retrieval accuracy improves at first since 

he network can capture more detailed information with narrower 

ranularity. However, the accuracy tends to saturation when p is 

ver 6. 

. Conclusion 

In this paper, we introduce a Dual-path Spatial-structure- 

reserving Common Space Network, which effectively reduces the 

ap between V-V Re-ID and V-T Re-ID. The network projects the 

nput images into a 3D tensor common space where abundant in- 

ormation is preserved. Most of part-based models utilized for V-V 

e-ID can easily be applied to V-T Re-ID domain. Significant perfor- 

ance improvement is achieved on benchmark datasets, like SYSU- 

M01 and RegDB dataset, with extensive experiments. 
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