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Abstract—With the development of deep learning, semantic
segmentation has made breakthrough progress, but supervised
learning requires a large amount of data with pixel-level an-
notation. However, for remote sensing data, it is difficult to
obtain large-scale pixel-level datasets. There is visual differences
between the data of different geospatial regions inevitably. In
particular, this difference is often referred to as a ‘“domain
gap” and can lead to significant performance degradation. The
unsupervised domain adaptive method can effectively solve the
above problems, by making the most of existing source domain
annotated data, without re-annotating the target dataset, better
semantic segmentation results can be obtained on the target
dataset. In this paper, we propose a novel unsupervised domain
adaptive framework based on curriculum learning (UDA-CL),
and a class-aware pseudo-label filtering strategy to dynamically
learn the class information during training. Comprehensive
experiments show that this method achieves the encouraging
semantic segmentation performance on aerial image datasets.

Index Terms—aerial image semantic segmentation, domain
adaption, curriculum learning, unsupervised learning

I. INTRODUCTION

Semantic segmentation is one of the traditional tasks in
computer vision. The general purpose of semantic segmen-
tation is to assign pixel-level semantic labels by generalizing
a large number of densely labeled images [1]-[3]. Along with
the development of the field of remote sensing, remote sensing
satellites can acquire a large amount of remote sensing image
data. Effective semantic segmentation of remote sensing im-
ages can classify ground objects at pixel level, which is widely
used in road network extraction [4], [5] and land cover [6]—[8]
, etc. It is of great significance in updating basic geographic
data, autonomous agriculture, intelligent transportation, urban
planning and sustainable development, and has a wide range
of practical value. There are two challenges in semantic
segmentation of remote sensing images: high resolution and
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large scale variance, which requires huge human resources
and time to label; Moreover, there are great differences in
topography and architectural style in different regions, and the
segmentation effect of trained models is often unsatisfactory
when applied to different geographical space regions. For
example, in urban and rural areas, land cover is completely
different in class distribution, object scale and pixel spectrum.

Unsupervised domain adaptive method [9]-[11] can solve
this problem better. Using annotated source domain data as
much as possible, better semantic segmentation results can
be obtained on unseen target data sets without re-annotating
the target datasets. Unsupervised domain adaptation assumes
that no part of the test data is labeled and the goal is to
generate high-quality segmentation even when there is a large
domain shift between the training image and the test image.
In this case, in order to improve the generalization ability of
CNN, one of the simplest and most commonly used methods
is to enrich the training data by using a variety of data
enhancement technologies such as gamma correction, random
contrast change, etc. In addition, the adversarial feature align-
ment method [12]-[15] uses generative adversarial networks
(GAN) [16], [17] to minimize the distance between feature
representation of source domain and target domain, where
discriminators can be used at multiple levels. In addition, the
method based on image style transfer [7], [18], [19] is to
transform the style of the source domain image to the target
domain under the condition of preserving the image content,
so as to use the label of the source domain image for training.
Most of these methods are also implemented by generative
adversarial networks.

This paper is closer to the algorithm based on pseudo-
label generation. A lot of work adopts the method of self-
training on pseudo-label [20]-[22]. High quality pseudo-labels
are sought through self-training to achieve category prediction
with high reliability. Most methods compute the label “offline”
beforehand, then use it to update the model and repeat the
process for several rounds. More recent frameworks that
follow this strategy rely on adversarial training, style transfer,
or both.
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Fig. 1: Overview of the UDA-CL network architecture. The training process consists of two steps. In step 1, the teacher model
M is pre-trained using source domain data and reused next with fixed parameters. In Step 2, source domain data and target
domain data are simultaneously put into the student model Mg (consistent with the teacher model) for training. We use teacher
network to generate pseudo labels for the target domain: according to the proportion of predicted pixels of each category,
we set the confidence threshold of linear growth to generate masks, so as to obtain pseudo labels of the region with higher
confidence. In the training process, the pixel number of pseudo labels is gradually increased to realize the learning from easy

to difficult.

The main contributions of this paper are: 1) it presents a
simple and effective unsupervised domain adaptive framework
with curriculum learning (UDA-CL). The framework adopts
the idea of curriculum learning and the method of pseudo
label generation to realize the adaptive semantic segmentation
of remote sensing image domain of urban and rural areas; 2)
it realizes the pseudo label of target domain data from easy to
difficult through dynamic modification to achieve stable and
effective training.

II. RELATED WORK

A. Semantic segmentation

Semantic segmentation is a challenging visual task that aims
at obtaining pixel-wise category predictions. The emergence of
full convolutional neural network (FCN) [23] greatly improves
semantic segmentation performance, but it ignores context
information. In order to achieve higher resolution prediction,
[24], [25] further applies deconvolution layer to CNN with
good performance. On the other hand, in order to learn
long-range context dependence better, researchers proposed
dilated convolution [26]-[28], spatial pyramid pooling [29],
attention mechanism [30]—[32], and other methods to increase
the receptive field of convolution layers.

B. Domain adaptation for Semantic segmentation

With the rapid improvement of semantic segmentation net-
work performance, people committed to apply deep learning
method to the remote sensing image analysis. Semantic seg-
mentation of remote sensing images faces several challenges,
such as lack of training data and pixel-level accuracy require-
ments. Although the number of remote sensing images is very
large, there is a lack of training data of pixel annotations.
The topography and landform of different regions in remote
sensing images will be different, for example, the architectural
style and vegetation type of urban and rural will be greatly
different. Unsupervised domain adaptive can effectively solve
the problem of large differences in data fields. The tasks of
source domain and target domain are the same, but there are
differences in data distribution. At present, there are methods
such as feature alignment based on adversarial training [12]-
[15], image style transfer [7], [18], [19] and pseudo-label
generation based on self-training [20]-[22].

C. Curriculum learning

Curriculum learning (CL) is a popular frontier direction
in recent years. Bengio [33] first proposed the concept of
Curriculum learning [34], which is a training strategy that
imitates the learning process of human beings and advocates
that the model should start learning from easy samples and



gradually advance to complex samples and knowledge. In this
paper, pixels with high confidence in the prediction map are
relatively easier to learn, while pixels with low confidence are
more difficult for the model. From easy to difficult, pixels are
gradually added into the model for training, so as to gradually
achieve better and more stable segmentation effects.

III. METHOD

In this section, we elaborate the proposed UDA-CL frame-
work for aerial image semantic segmentation.

A. Overall Framework

Given a set of labeled data in source domain D, = {X,, Y}
and unlabelled data in target domain D; = {X;}, where
X, is source domain image with its corresponding label Y,
X, is target domain image, the goal of unsupervised domain
adaptation is to use labeled source domain data in D, and
unlabeled target domain data in D, to train a model, which will
perform well on the unseen test data in the target domain. In
our work, the two domain datasets share the same label space.

As shown in Figure 1, our UDA-CL framework consists
of two stages. Stage 1 performs a teacher model training
procedure on source domain dataset. And the teacher model,
named as My, stays fixed afterwards. On stage 2, both the
source and target domain data are fed into the student model.
Note that My in Stage 2 is used for two aspects. One is for the
initialization of the student model, and the other is to generate
the pseudo labels for the target domain dataset.

Firstly, we use source data X, and its corresponding ground-
truth Y, to warm up the model, and save the pre-trained
weights as Mr. Then the pseudo labels Y, are produced on
target domain, data from both domains are put into the network
for training in the following stage.

We define the loss for source domain data, denoted by Ly,
as a standard pixel-level cross-entropy loss to measure the
ground truth Y. While the loss for target domain is denoted
by L£;, which uses probability map P\ and its pseudo

labels Y\,
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Our objective is to minimize overall loss £, formulated as:
L=Ls+ NxLy, 3

where A is a hyper-parameter that adjusts the contribution of
unlabeled information.

B. Class-balanced Label Sampling

Pseudo-labels Y, are generated according to the confidence
of the model prediction. We set different thresholds for each
category, and select the pixels whose confidence is higher than
the threshold of this category for annotation, and ignore the
rest pixels.

Ny argmaz Py, Py > 1.
v 7 @
=
ignore, otherwise

There is an obvious class imbalance problem in semantic
segmentation tasks. Some categories have very few pixels and
only appear in a small number of data samples. For this “long
tail” phenomenon, we adopt class-balanced sampling, and set
the threshold for each category respectively, so as to achieve
the consistency of the class distribution of the selected samples
and the training set as far as possible:
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We can obtain the class distribution of the target domain,
where NV, is the total number of pixels predicted to be class ¢
in the target domain, and NNV, is the total number of pixels in
the target domain.

Uc:Nc/Nt (6)

We sort the predicted confidence from high to low, and
select the top IV, pixels in class c as the pseudo label to sample
for subsequent training. The confidence threshold of the top
N,-th pixel is 7.

C. Curriculum Learning Strategy

We believe that the model is easier to learn the pseudo
labels with higher confidence, while the pseudo labels with
lower confidence are more difficult to learn. Based on this, we
dynamically divided the difficulty of label for training, adding
the pseudo labels that are easy to learn at the beginning, and
gradually adding the pseudo-labels that are relatively difficult
during the training process. If self-pace is completely adopted,
the model is likely to be greatly affected by pseudo label noise
in the training process. In this case, the pre-trained model Mg
is used to generate pseudo labels Y, at one time with different
thresholds 7., so that the training process is more stable and
perform better.

The whole process of the proposed framework is detailed
in Algorithm 1. In the process of target domain data training,
the number of pseudo labels increases linearly. We set the
proportion of the pixel number of the initial pseudo-label
to the pixel number of all target domain data as kg, and
proceed in a cycle: when the loss function of model training is
stable, the ratio of the pseudo-label is increased to k;, and the
pseudo-label is updated according to the current ratio, and the
training continues until maximum proportion K is reached. In
this process, the proportion of pseudo-label pixels increases
linearly, and the proportion of each increment is consistent.

IV. EXPERIMENTS

A. Experimental Settings

Dataset: LoveDA [35] dataset encompasses both urban and
rural domains, the urban dataset is composed of 1156 images
for training, 677 images for validation and 820 for testing,



Algorithm 1: UDA-CL: unsupervised domain adaption
framework
Input: Labeled source domain training set Dy,
unlabeled target domain training set Dy,
semantic segmentation model M, Mg,
Output: Fine trained model Mg.
Step 1:
Train teacher model Mt on D, with L,;
Step 2:
Initialize student model Mg < Mr;
Predict pseudo label f(t on D; with Mr ;
for k; = ko to K do
Te = Ne * ky;
Obtain SA(t by using 7. to mask Py
for minibatch {x;;,x;;} C {Ds,D;} do
Train Mg on {X,;,X;;} with loss L, L
end for
end for
Return Mg.

and the rural dataset is composed of 1366 images for training,
992 images for validation and 976 for testing. The spatial
resolution is 0.3 m, with red, green, and blue bands.

Model: We implement the semantic segmentation model
with DeepLabv2 and employ ResNet-50 as the backbone,
which is pre-trained on ImageNet. The Adam optimizer was
used for the discriminator with the momentum of 0.9 and
0.99. The number of training iterations was set to 10k, with
a batchsize of 16. Each batch consists of eight source domain
images and eight target domain images randomly extracted
from the datasets. The threshold setting for filtering pseudo-
label pixels increases by 5% each time from 20% of the
number of pixels in the training set in the target domain to
the maximum 50%.

B. Comparisons with State-of-the-Arts

As is shown in Table II, the Oracle setting obtains the
best overall performances. Compared with the adversarial
training method, the self-training method address the problem
of class imbalance with pseudo label generation, and achieves
better performance. Our method achieves the highest overall
mloU score in rural — urban experiments, and 0.45% mloU
higher than CBST [36]. Table III shows the performance on
reverse domains. Due to the inconsistent category distribution,
IAST [37] has the highest accuracy in urban — rural experi-
ments, our method is 2.22% mloU higher than CBST, and the
categories with few pixels like Building, Road, and Barren
achieved higher score than IAST. Figure 2 is the loss curve
of CBST and UDA-CL in training. As illustrated, the loss of
UDA-CL fluctuates less in the early stage and is more stable.
We believe that the reason lies in the fact that the pseudo-
label generated by our teacher network is more stable. Sample
results are visualized in Figure 3.
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Fig. 2: CBST [36] and UDA-CL loss function curves

C. Ablation Studies

TABLE I: Ablation study on Rural — Urban test.

Method mloU(%) AN

w/o CL 39.68 -2.09
w/o sample 35.46 -6.31

UDA-CL 41.77 -

In this part, we conducted ablation experiments on whether
to use curriculum learning and whether to sample high con-
fidence pixel values, and the results in table I showed that
mloU decreased by 2.09% in the training method of one-
time generation of pseudo-labels in the target domain without
CL. mloU is reduced by 6.31% by randomly selecting pixels
to generate pseudo-labels instead of high confidence pixel
selection.

V. CONCLUSION

This paper addresses the label consuming problem when
manipulating domain adaption for aerial images. We managed
to produce high confidence pseudo labels with the curriculum
learning method on large amount of unlabeled target domain
images. Experimental results on the publicly available LoveDA
dataset confirms the efficiency of the proposed framework. In
the upcoming works, better performance seems promising with
advanced CL variants.
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