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Abstract—Recently, the research on semi-supervised semantic
segmentation has made rapid progress, where a large number
of unlabeled images with pseudo labels are adopted for boost-
ing performance. Despite their achievement, how to get high-
quality pseudo labels still remain challenging. Most methods
would use complexly designed threshold strategies for pseudo
tag generation. In this article, we propose a semi-supervised
semantic segmentation method based on simple threshold filtering
and self-training. In the process of generating pseudo-labels,
the method deals with the thresholds of different categories of
image pixels separately. It filters the labels of each category of
pixels by dynamically changing thresholds to guide the model to
train. This method is a general strategy and can be combined
with the existing semi-supervised semantic segmentation methods
based on generating pseudo-labels. We fully demonstrate its
effectiveness on the Cityscapes dataset and UAVid dataset.

Index Terms—semi-supervised learning, semantic segmenta-
tion, dynamic thresholding

I. INTRODUCTION

Semantic segmentation is a vital computer vision topic,

which can be applied in different fields, such as autonomous

driving [1], [2], robotic grasping prediction [3], [4], dynamic

SLAM [5], [6], etc. The severe shortage of labelled data and

the huge labour assumption for acquiring pixel-wise labels

make the task challenging. Semi-supervised learning (SSL)

methods aim to make good predictions using a limited amount

of labelling data and a large amount of unlabeled data, which

makes it suitable for training semantic segmentation models.

There are various ways to use affluent unlabeled data with

SSL. For example, consistent regularization and self-training

methods are commonly used for semi-supervised semantic

segmentation, where strong/weak augmentation is added to

the training procedure. French et al. [7] verified that mask-

based image-level strong augmentations, like CutOut [8] and

CutMix [9], can be helpful to the semantic segmentation task.

CCT [10] introduces feature-level perturbations and enforces

consistency between the predictions of different decoders.

GCT [11] performs network perturbations by using two

differently initialized segmentation models and encourages

consistency in their predictions. Others pay their attention

to loss functions, DMT [12] re-weights the loss on different

regions based on the disagreement of two different initialized

models. Moreover, pseudo-labels with self-training methods

are more efficient. CPS [13] applies two models with the

same architecture but different initialization to create pseudo

labels for each other to conduct cross-pseudo. However, the

generation of pseudo labels is not easy.

Usually, the pseudo labels are of low quality and how to

select confident labels becomes challenging. PseudoSeg [14]

adopts grad-CAM based on image-level labels to enhance

the quality of pseudo labels. ST++ [15] further proposes to

separate high-confidence and low-confidence pseudo-labels for

phased retraining, giving priority to high-confidence samples

to generate better pseudo labels.

The more efficient way would be to set a threshold for

high confident scores. FixMatch [16] is an image classification

method based on pseudo-labels, in the process of pseudo-

label generation, when the image classification confidence is

greater than a fixed threshold, the loss calculation of this

image is performed. In semantic segmentation, some methods

use simple threshold filtering in the process of generating

pseudo-labels. CAC [17] uses a fixed threshold to generate

the pseudo-label. U2PL [18] uses a fixed entropy value as

a filtering criterion for each pixel’s prediction result. DST-

CBC [19] linearly increases the proportion of pixels in the

pseudo-label during training and determines the threshold by

the proportion and the overall confidence distribution of a

particular class of pixels. Similarly, DGCL [20] adopts the

entropy of each pixel’s prediction result as the standard, and

linearly increases the proportion of pixels in the pseudo-

label with the training, too. However, the above threshold

filtering approach does not take into account the fact that

model learning is a tendency to go faster and then slower. Dash
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[21] is a semi-supervised image classification method based on

simple FixMatch [16] framework, which considers the pattern

of model’s learning process and achieves very good results in

combination with a unique threshold filtering process in which

the threshold is decreased based on an exponential function.

However, the threshold filtering method in Dash is set for

image classification tasks, uses the same threshold to filter all

images, and the category imbalance in semantic segmentation

is more obvious, so the confidence of each pixel varies greatly.

In this work, we propose a dynamic threshold filtering se-

mantic segmentation method (DTFSeg) that takes into account

the process by which the predictive power of a model changes

over time. We adjust the threshold filtering method in Dash

to adapt it to the semantic segmentation task, set a separate

threshold for each category. As shown in Fig. 1, our key

method is based on a fast and then slow threshold drop process

based on an exponential function. After a warm-up phase

of training using only labeled data, the initial value of the

threshold is set based on the average initial confidence of the

model’s prediction results for each category. As the training

progresses, because the model’s predictive ability increases,

the probability of correct pseudo-labels increases, so the fil-

tering threshold is reduced. The initial threshold represents the

reliability of each sample to a certain extent and also reflects

the learning difficulty of different samples, after threshold

filtering, we assume that the current threshold-filtered label

is trusted. Therefore, the weighted unsupervised loss based

on the initial threshold is added. Our main contributions are

summarized as follows:

• The DTFSeg method is proposed, with an exponentially

decreasing threshold based on the confidence level of the

labeled data categories in the previous epoch before the

unlabeled data is added.

• On the basis of the initial threshold, we set and add loss

weights on the unsupervised loss, and focus more on the

difficult-to-distinguish categories.

• Experiments on two public datasets, Cityscapes [22] and

UAVid [23] dataset, demonstrate the effectiveness of the

proposed method.

II. THE PROPOSED METHOD

A. Problem Definition

Given a combination set of M pixel-wise labeled images

Dl = {(xl, yl)}Ml=1 and N unlabeled images Du = {xu}Nu=1,

with N >> M , the key to semi-supervised semantic segmen-

tation is how to utilize a large number of unlabeled images

to get a sufficient performance boost compared to models

obtained by training with only a small number of labeled

images.

B. Self-training Based Semantic Segmentation Framework

In semi-supervised segmentation, the framework based on

self-training has been widely used, which usually consists of

one teacher model and one student model. The teacher model

is responsible for generating pseudo labels, while the student

model learns from both ground-truth labels and pseudo labels.

Pseudo-labels need to be generated in each iteration. Consid-

ering the jth pixel on the ith unlabeled image, xu
ij , we define

the model’s prediction probability as puij , and its corresponding

confidence as cuij , the inference can be described as:

puij = f
(
xu
ij

)
, (1)

cuij = max{puij}, (2)

with f(·) being the trained model.

Assuming there are K categories in the dataset, the class

label of pixel xu
ij can be predicted as:

ŷuij =

⎧⎨⎩argmax
k

puij , cuij > τ, k ∈ K

ignore, other
(3)

where τ is the confidence threshold, and the corresponding

pixel is valid only if the probability of cij is greater than

it, otherwise, it is ignored. The larger the cuij , the larger the

probability that the pixel will be predicted as the k-th category.

After generating pseudo-labels, the training for the student

model contains supervised loss Ll and unsupervised loss Lu.

The total loss L is

L = Ll + μLu

= − 1

MPl

∑M
i=1

∑Pl

j=1

∑K
k=1y

k
ij log(p

k
ij)

− μ

NPu

∑N
i=1

∑Pu

j=1

∑K
k=1ŷ

k
ij log(p

k
ij),

(4)

in which the Pl and Pu represent the number of pixel of each

labeled image and unlabeled image, the Ll and Lu are the

cross-entropy loss on labeled data and unlabeled data with

pseudo labels, and μ is a loss weight to balance supervised

and unsupervised loss.

In each iteration, the parameters of the student model can

be updated with

θtstudent = θt−1
student − lr · ∂L

∂θt−1
student

, (5)

where lr is the learning rate.

After that, we update the teacher model with the parameters

of the student model using the EMA (Exponential Moving

Average) method [24], as

θtteacher = ξθt−1
teacher + (1− ξ) θtstudent, (6)

with “ξ” being the weight that controls model updates.

C. Dynamic Threshold Filtering

Today, most of the existing threshold filtering methods

do not consider the objective change trend of the model

learning ability nor treat each category of pixel in the image

separately. In our work, we use the pseudo-labels [16] method

to complement our approach of dynamic threshold filtering as

Fig. 1. Concretely, we adjusted the threshold filtering method

in Dash [21] to adapt it to the semantic segmentation task, set

a separate threshold for each category. In our approach, the

threshold is calculated as follows,

τk = C · γ(1− cur iter
total iter ·T) · τ initk (7)
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Fig. 1. The proposed DTFSeg framework. The upper part of the dotted line represents the preheating training using only labeled images, when some pixels
in the image are predicted to be a certain category, we record the average confidence of these pixels in this category as the initial threshold of the current
category. The bottom part represents the process of generating pseudo-labels after warm-up and filtering pseudo-labels based on the confidence threshold.
During the training process, the threshold of each class decreases in the form of an exponential function of the training time.

the τ initk represents the initial threshold, and C is a constant

used to deflate the size of the initial confidence level, the γ
is the base used to control how fast or slow the exponential

function declines, which usually takes a value between 1.0001

and 1.01, the “cur iter” and “total iter” represent the cur-

rent number of iterations and the total number of iterations

that have been performed in training, respectively. Because

the value of “ cur iter
total iter ”is always less than 1, we multiply it

by a hyper-parameter T to let the overall “
(
1− cur iter

total iter · T )”

value can be less than 0, compared to not adding T , the overall

results have a more substantial decrease.

Different from the initial threshold setting approach in

Dash [21], we set thresholds individually for each category and

use the average value of the maximum confidence of pixels

predicted by the model as the k-th category in the last epoch

of label-only training as the initial confidence threshold for

that category. As τ initk =
∑

tlij
num(tlij)

, where tlij = maxplij and

argmaxplij = k. Because of the difference in how the initial

threshold is calculated, model training is divided into two

stages. In the first stage, only labeled data is used, which not

only warms up the model to make the pseudo-labels generated

more accurate but also calculates the initial confidence of each

category. The second stage uses both labeled and unlabeled

data and uses our threshold filtering method in unlabeled data

to obtain more accurate pseudo-labels.

D. Weighted Loss

In section II-C, the τ initk represents the initial confidence of

the k category and, to some extent, the different confidence

levels between each category, so τ initk can be used as a

reference for setting loss weights. Given τ initk , the final wk

for category k of unsupervised loss can be described as

wk =

⎛⎝
(∑K

k=1 τk

)
/K

τk

⎞⎠0.5

(8)

Finally, the loss at the stage where only labeled data is

used to warm up the model and calculate the initialization

confidence is

L = Ll (9)

After the stage where only labeled data is used to warm up

the model and calculate the initial confidence, unlabeled data

is added to the training. At this time, the overall weighted loss

is
L = Ll + μLu

= − 1

MPl

∑M
i=1

∑Pl

j=1

∑K
k=1y

k
ij log(p

k
ij)

− μ

NPu

∑N
i=1

∑Pu

j=1

∑K
k=1wkŷ

k
ij log(p

k
ij)

(10)

The joint usage of threshold filtering and weighted loss

ensures that our DTFSeg model has good performance with

limited labeled images.
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III. EXPERIMENTS

Firstly, the experimental settings used to evaluate our pro-

posed approach are introduced. Then, we demonstrate our

method on the Cityscapes and UAVid datasets at different

labeled data scales and compare it to a supervised baseline and

other SOTA methods. Next, we compare the proposed DFTSeg

with other common threshold filtering methods under different

proportions of division on the Cityscapes dataset.

A. Experimental Setup

Dataset. Our experiments and ablation studies are tested on

two public datasets, Cityscapes [22] and UAVid [23].

Cityscapes contains 5,000 fine annotated images with 19

semantic classes of urban scenes, and those images are divided

into training, validation, and testing sets which contain 2,975,

500, and 1,525 images, respectively. We train only with the

training set and evaluate with the validation set. The original

UAVid dataset contains footage taken from the perspective of a

drone, divided into eight categories, dividing cars into moving

cars and parked cars. For the purpose of image semantic

segmentation, we combine the two categories of cars into

one category. Besides, based on the original large resolution

image, the length and width are cut to one-third of the length

of the original image, resulting in a smaller resolution in

order to facilitate model training. The processed UAVid dataset

includes 3480 training images and 340 validation images.

For both datasets, we divide the whole training set into two

groups via randomly subsampling 1/4, 1/8, and 1/30 of the

whole training set as the labeled set and regard the remaining

images as the unlabeled set, and evaluate with the validation

set.

Evaluation. Our performance evaluation is based on single-

scale testing and the mean of intersection over union (mIoU).

We report the results of the Cityscapes [22] val set and the

UAVid [23] val. We compare our results with recent reports

in a fair manner. We use ResNet-101 [25] as our backbone

networks. We load the ResNet-101 weights pre-trained on

ImageNet [26]. In addition, we use DeepLabv3+ [27] as a

segmentation head. We use mini-batch SGD with momentum

to train our model with Sync-BN. For the Cityscapes dataset,

we set the crop size as 800 × 800 and for the UAVid dataset,

we set the crop size as 600 × 600. For both datasets, we adopt

a learning policy with an initial learning rate of 0.01 which is

then multiplied by
(
1− iter

max iter

)0.9
, and set weight decay as

0.0005, and batch size as 16. We use random horizontal flip,

random scale, and crop as our default data augmentation, and

OHEM [28] loss is used on Cityscapes. We set the parameter

γ in Eq. (7) to value 1.001, C to value 1.001 and T to value

1000.

B. Comparison with Current Methods

The comparison results with other state-of-the-art methods

Cityscapes and UAVid datasets are presented in Table I and

II, respectively.

Cityscapes. As shown in Table I, across a wide range

of the number of labeled images, all of our methods obtain

TABLE I
COMPARISON WITH SOTA METHODS ON THE CITYSCAPES DATASET.

Method 1/30(100) 1/8(372) 1/4(744)

SupOnly 56.84 66.41 70.70

AdvSeg [29] - 58.80 62.30

S4GAN [30] - 59.30 61.90

ECS [31] - 67.40 70.70

CutMix [7] 55.70 65.80 68.30

ClassMix [32] 54.10 61.40 63.60

PseudoSeg [14] 61.00 69.80 72.04

DCC [17] - 69.70 72.70

CPS [13] 61.52 73.82 74.02

AEL [33] 64.36 73.95 75.72

ST [15] 62.49 73.56 75.61

ST++ [15] 63.31 74.16 75.92

DTFSeg(Ours) 63.93 70.00 76.10

TABLE II
COMPARED WITH OTHER THRESHOLD FILTERING METHODS ON UAVID

DATASET

Method 1/30(116) 1/8(435) 1/4(870)

SupOnly 63.41 67.19 68.48

ST [15] 66.55 69.84 71.24

ST++ [15] 68.02 70.66 72.04
SSL ELN [34] 65.55 68.63 68.63

DTFSeg(ours) 68.10 71.00 71.80

great results under a fair comparison with previous methods.

The threshold decline curves of each analogy obtained during

training are shown in Fig. 2. When a quarter of the data is la-

beled, our experimental results exceed the supervised learning

baseline by 6.97%, which slightly exceeds the performance of

ST++ [15] by 0.18%, AEL [33] by 0.38%, etc, and reached the

current optimum. When the amount of labeled data accounts

for 1/30, our performance exceeds the baseline of supervised

learning by 13.09%, and it can also be slightly better than

methods such as ST++ [15] by 0.62% and CPS [13] by 2.41%,

second only to AEL [33]. When the amount of labeled data

accounts for 1/8, our performance has declined somewhat, only

exceeding the baseline of supervised learning by 3.39%, but

it is also better than PseudoSeg [14] by 0.2%, ClassMix [32]

by 8.6% and other worse methods. The Cityscapes dataset

contains complex street view images, and the experimental

results on the Cityscapes dataset indicate that our DTFSeg

achieves competitive performance for multi-label images with

complicated scenes. The experimental results demonstrate that

effective threshold filtering can eliminate imprecise false labels

in semi-supervised semantic segmentation to some extent.

UAVid. Compared to the Cityscapes dataset, the UAVid

dataset images come from a top-down view, the distribution of

categories is more unbalanced, and the generation of correct

pseudo-labels is more difficult, in which case our method
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Fig. 2. Class-wise dynamic threshold decline curve on the Cityscapes dataset
(1/4 labeled). The training procedure starts with a high threshold (limited
but confident labels) and ends with a threshold near zero (almost the whole
dataset).

TABLE III
COMPARED WITH OTHER THRESHOLD FILTERING METHODS ON THE

CITYSCAPES DATASET

Method 1/30(100) 1/8(372) 1/4(744)

SupOnly 56.84 66.41 70.70

wo-th 62.89 69.37 74.01

fixed-th 62.90 69.45 75.50

en-th 49.46 62.30 69.09

max-th 58.55 69.34 75.48

DTFSeg(ours) 63.93 70.00 76.10

also has some advantages over other methods. As we can see

in Table II, our method exceeds the supervisory method by

4.69%, 3.81%, and 6.32% when the proportions of labeled data

are 1/30, 1/8, and 1/4 respectively, most of them exceeding

the methods such as ST [15], SSL ELN [34], etc. When the

amount of labeled data accounts for 1/30, our performance ex-

ceeds the methods such as ST++ [15] by 0.08% and SSL ELN

[34] by 2.55%, when the amount of labeled data accounts

for 1/8, our performance exceeds ST++ [15] by 0.34% and

SSL ELN [34] by 2.37%, when the amount of labeled data

accounts for 1/4, our performance exceeds SSL ELN [34] by

3.17%, and it only does not exceed the ST++ method, but it’s

very close as well. These results illustrate that our method

of filtering pseudo-labels based on dynamic threshold still

achieves good results in the presence of an extreme imbalance

of categories in the image.

C. Comparison with Other Threshold Filtering Methods

In order to prove that it is threshold filtering method that

we proposed works in our network, and that our threshold

filtering method outperforms other filtering methods, we de-

sign three other threshold filtering methods, which are based

on the fixed threshold, entropy-based threshold, and Logits-

based threshold in pixel classification results, and apply the

thresholdless filtering method for comparison. As shown in

Table III, specifically, the Settings for each threshold method

are as follows:

• wo-th: Without threshold. Instead of threshold filtering,

the prediction of the teacher model is used as a pseudo-

label directly.

• fixed-th: Fixed threshold. Different from other methods

that use fixed thresholds [17], [18], we design a more

reasonable method to set thresholds for each category

separately. We use the average confidence of each cate-

gory when it is selected as a prediction category in the

last round of supervised training before adding unlabeled

data, multiplied by 0.75 as the threshold.

• en-th: Entropy threshold. Inspired by [20], we use the

teacher model to predict the unlabeled images and use

the entropy of each pixel in the results as the basis for

threshold filtering. According to the entropy of each pixel

in each image, we delete a certain proportion of pixels

with high entropy. We reduce linearly the proportion of

pixels that are filtered as the training time increases and

set each unlabeled image to filter 25% to 0 from the

semi-supervised beginning.

• max-th: Maximum probability threshold. Similar to the

threshold filtering method in “en-th”, according to the

maximum logit value of each pixel in each image, we

delete a certain proportion of pixels with low maximum

logit value, and we reduce linearly the proportion of

pixels that are filtered as the training time increases and

set each unlabeled image to filter 25% to 0 from the

semi-supervised beginning.

In Table III, we can observe that our threshold setting

method is more effective than other threshold setting methods

in Cityscapes datasets with different proportions of labeled

data. When the proportion of labeled data is 1/30, our method

is 1.03% higher than the fixed threshold, which is the best-

performing method except our method. When the labeled data

accounted for 1/8 and 1/4 of the data, the best methods except

our method were fixed threshold filters, and our dynamic

threshold setting method exceeded them by 0.45% and 0.6%,

respectively. Among all the different proportion of labeled

data, the threshold filtering method using entropy gets the

worst performance. Our method yielded the best results.

IV. CONCLUSION

This paper proposes a semi-supervised semantic segmen-

tation method based on the threshold setting of the expo-

nential function, together with loss weighting, which allows

our method to achieve more advanced results. Unlike other

threshold filtering methods, ours sets separate thresholds for

each category and uses the supervised average confidence

level as the initial threshold, which more accurately distin-

guishes the degree of confidence among the categories, and
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the exponential form of the threshold decreases to match the

rising state of the model’s predictive ability. Experiments on

Cityscapes and UAVid dataset demonstrate the effectiveness

of our method.
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