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a b s t r a c t 

River ice semantic segmentation is a crucial task, which can provide us with information for river mon- 

itoring, disaster forecasting, and transportation management. Previous works mainly focus on higher ac- 

curacy acquirement, while efficiency is also important for reality usage. In this paper, a real-time and 

accurate river ice semantic segmentation network is proposed, named FastICENet. The general architec- 

ture consists of two branches, i.e., a shallow high-resolution spatial branch and a deep context seman- 

tic branch, which are carefully designed for the scale diversity and irregular shape of river ice in re- 

mote sensing images. Then, a novel Downsampling module and a dense connection block based on a 

lightweight Ghost module are adopted in the context branch to reduce the computation cost. Further- 

more, a learnable upsampling strategy DUpsampling is utilized to replace the commonly used bilinear 

interpolation to improve the segmentation accuracy. We deploy detailed experiments on three publicly 

available datasets, named NWPU_YRCC_EX, NWPU_YRCC2, and Alberta River Ice Segmentation Dataset. 

The experimental results demonstrate that our method achieves state-of-the-art performance with com- 

peting methods, on the NWPU_YRCC_EX dataset, we can achieve the segmentation speed as 90.84FPS and 

the segmentation accuracy as 90.770 % mIoU, which also illustrates the good leverage between accuracy 

and speed. Our code is available at https://github.com/nwpulab113/FastICENet 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Image semantic segmentation remains a conventional challeng- 

ng task in computer vision, which is widely used in geographic in- 

ormation systems [1,2] , autonomous vehicles, medical image anal- 

sis, visual surveillance, disaster prediction [3] and so on. In the 

eld of river ice semantic segmentation, accurate segmentation re- 

ults can provide crucial information for river monitoring [4,5] , 

isaster forecasting [6] , and transportation management, especially 

or rivers with large latitude spans. Meanwhile, the segmentation 

odel is often requested to be deployed to some hydrological sta- 

ions without powerful computation resources. It is required to 

uild time-efficient and accurate models in reality. 

Trustful segmentation results are hard to get for river ices. 

n most cases, floating ice are of different sizes and in irregu- 
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ar shapes in the image, which requires the network to have the 

bility to extract multi-scale features. With the fast development 

f deep learning methods, many excellent semantic segmenta- 

ion algorithms based on deep convolutional neural networks have 

een proposed. Most of them would adopt a backbone ResNet [7] , 

eepLab [8] , Transformer [9] to extract meaningful features. Al- 

hough these complex networks have improved the accuracy, their 

egmentation speeds are very slow. Generally, the capacity of some 

igh-accuracy network models is very large. That makes it difficult 

o deploy on the devices in production. This urges us to design a 

ore flexible network for our task. 

Yet the pursue of time efficiency models is not easy to ac- 

omplish. Most real-time deep neural networks choose lightweight 

ackbone networks and reduce the number of feature channels 

10] and other methods. However, these ways will make the net- 

ork’s ability to capture fine information worse, so that further 

amages the accuracy. 

We need to build a river ice semantic segmentation network 

ith both accuracy and speed to meet the need for lightweight 

https://doi.org/10.1016/j.sigpro.2023.109150
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2023.109150&domain=pdf
https://github.com/nwpulab113/FastICENet
mailto:lran@nwpu.edu.cn
https://doi.org/10.1016/j.sigpro.2023.109150
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Fig. 1. Comparison with state-of-the-art methods in accuracy and speed on 

NWPU_YRCC_EX dataset. The horizontal axis represents the segmentation speed of 

the network, and the vertical axis represents the segmentation accuracy of the net- 

work. Our methods, FastICENet (acc) and FastICENet, are marked in red. 
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evices to process data quickly. There are two main problems for 

eal-time and accurate semantic segmentation of river ice: (1) The 

egmentation accuracies of some semantic segmentation networks 

re very high, but due to their very complex model structures 

nd some lightweight terminals often do not have the comput- 

ng power of the laboratory server, which leads to their slow seg- 

entation speed and difficult to process the image transmitted by 

he sensor in time; (2) Although some lightweight networks can 

eet the real-time requirements, their simple network structures 

esult in low segmentation accuracy and are difficult to be applied 

n practice. 

To this end, we propose a two-branch segmentation network, 

.e. FastICENet, for accuracy and efficiency improvement. It consists 

f a spatial branch and a context branch, which is inspired by [11] .

he spatial branch is a stack of convolutional and non-linear map- 

ing layers to obtain the details of local region. The context branch 

s designed to provide deep semantic information for distinguish- 

ng different kinds of objects. That reaches a more complex branch 

nd is also more time-consuming. Therefore, to speed up the seg- 

entation, we adopt Downsampling and Ghost module strategies 

o reduce the analysis cost of the context branch. Furthermore, 

ince there are many small ice blocks in the river ice images, a 

earnable upsampling strategy DUpsampling is utilized to replace 

he commonly used bilinear interpolation to increase the segmen- 

ation accuracy, especially for small ice blocks. 

The main contributions are summarized as follows: 

1) we adopt a two-branch structure and utilize a learn- 

ble upsampling strategy DUpsampling to replace the com- 

only used bilinear interpolation, named FastICENet Accu- 

acy Version (FastICENet(acc)) to address the characteristics of 

cale diversity and manipulate lots of small ice blocks in 

iver ice images. Compared with state-of-the-art methods, Fas- 

ICENet(acc) performs excellently and achieves 91.86 % mIoU on 

WPU_YRCC_EX, the highest segmentation accuracy as shown in 

ig. 1 . 

2) We develop a time and accuracy balanced model, FastICENet, 

hich adopts a new Downsampling module and a dense connec- 

ion block based on a lightweight Ghost module in the context 

ranch. This design reform improves the speed significantly while 

aintaining high segmentation accuracy. 
2 
3) We enlarge and relabeled two river ice datasets, the 

WPU_YRCC_EX and NWPU_YRCC2. Both of them are publicly ac- 

essible now. Along with Alberta River Ice Segmentation Dataset 

12] , we conduct our experiments on three public datasets. Com- 

ared with the most recent real-time semantic segmentation 

ethods, FastICENet achieves the state-of-the-art trade-off be- 

ween the accuracy and the speed, shown in Fig. 1 . 

The remainder of this paper is organized as follows. In 

ection 2 , we summarize some related work of real-time seman- 

ic segmentation and ice segmentation. The proposed method is 

escribed in Section 3 . Section 4 presents the experiment configu- 

ation and analyzes the results. Finally, the conclusion is given in 

ection 5 . 

. Related work 

.1. Real-time semantic segmentation 

Semantic segmentation is a time consuming task considering 

hat it predicts pixel-wise labels, while one remote sensing im- 

ge may contain millions of pixels. Various effort s have been made 

o tackle this problem. Some researchers clip or resize the in- 

ut image to reduce the computational complexity, such as SNet 

13] and ICNet [14] . Some approaches reduce the number of net- 

ork channels to improve the reasoning speed, such as SegNet 

15] and ENet [16] . The others mostly adopt lightweight classifi- 

ation network as their backbone and carefully design the network 

o improve segmentation speed and remedy the accuracy drop. For 

nstance, EDANet [17] proposes a new network architecture with 

fficient dense modules using asymmetric convolution. FastSCNN 

18] adopts the skip connection in the deep convolutional neural 

etwork and proposes a shallow learning module to downsam- 

le for fast and efficient multi-branch low-level feature extraction. 

TDC [19] proposes a novel and efficient structure named Short- 

erm Dense Concatenate network by removing structure redun- 

ancy. PIDNet [20] proposes a real-time semantic segmentation 

etwork inspired by PID Controller. 

.2. Ice segmentation 

Many fields and applications have achieved rapid development 

nd great progress due to the excellent performance of deep learn- 

ng. Intelligent river ice monitoring is one of them. Wang et al. 

21] use a basic deep convolutional neural network to estimate ice 

oncentration using dual-pol SAR scenes collected during melting. 

ingh et al. [22] adopt some semantic segmentation models (e.g., 

Net [23] , SegNet [15] , DeepLab [24] and DenseNet [25] ) based on

NNs to segment river ice images into water and two distinct types 

f ice drift ice and anchor ice. ICENet [26] is a semantic segmen- 

ation deep convolution neural network for river ice segmentation, 

hich uses the fusion of position and channel-wise attentive fea- 

ures. ICENetv2 [27] designs a multi-scale feature fusion framework 

or fine-grained river ice segmentation according to the character- 

stics of river ice. These models have constantly promoted the per- 

ormance, however they rarely pay attention to the speed and can- 

ot meet the real-time requirement. In this paper, we propose a 

eal-time and accurate river ice semantic segmentation network, 

amed FastICENet. 

The appearance of river ice varies dramatically in scale, color, 

exture and shape. Especially, the size of river ice ranges from a 

ew pixels to thousands of pixels in an image. ICENet [26] and 

CENetv2 [27] show that the two-branch network structure like 

iSeNet [11] with a finer spatial branch and a deep context se- 

antic branch is very suitable to segment the river ice with scale 

iversity characteristic. 
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Fig. 2. The network architecture of FastICENet. The two numbers in bracket represent the number of input channels and output channels, respectively. 
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Fig. 3. Downsampling module. This module replaces partial convolution with max- 

pooling, which effectively reduces the amount of computation. 
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. Method 

.1. The overall architecture 

The architecture of the proposed FastICENet is shown in Fig. 2 . 

t consists of two branches: the spatial branch and the context 

ranch, which extract low level finer information and deep seman- 

ic information, respectively. 

The spatial branch simply consists of three cascade convolution 

odules, as shown in Fig. 2 . Each convolutional layer downsam- 

les the feature map size to 1/2 of the previous one to obtain low 

evel finer information. While the context branch are more care- 

ully designed with scaling and refinement manipulations. Then, 

he output features of the two branches are fused by a feature fu- 

ion module FFM. Due to the feature maps of the two branches are 

ot the same, it is not possible to simply add the feature maps of 

hese two parts. The method of FFM is to concatenate two partial 

eature maps and then use convolution to calculate weighted fea- 

ures, multiply the weighted features with the original feature map 

o calculate channel attention, and finally perform residual connec- 

ions with the original feature map. Finally, the fused feature maps 

re upsampled through a DUpsampling module to generate the fi- 

al prediction results. 

To reduce the time consumption of the context branch, we 

dopt the Downsampling module and a dense connection block 

ased on a lightweight Ghost module. In details, the context 

ranch contains three consecutive Downsampling modules and a 

ense connection block with five ghost modules (named Dense 

lock 1), followed by a Downsampling module and a dense con- 

ection block with eight ghost modules (named Dense Block 2). 

hen, the output of Dense Block 2 is directed to an attention re- 

ne module ARM and a global average pooling (GAP) layer in par- 

llel. After ARM and the average pooling, their output feature maps 

re concatenated, upsampled by DUpsampling and recalculated by 

 convolution module. Finally, the obtained feature maps and the 

utput of Dense Block 1 with ARM refined are concatenated, re- 

alculated with another convolutional module to produce the final 

utput of the context branch. The ARM module uses global pooling 

nd 1 × 1 convolution to calculate the weight of the input feature 

ap, and then multiplies it with the input feature map to calculate 

hannel attention. 

The details of the novel Downsampling module, the dense con- 

ection block based on a lightweight Ghost module, and the DUp- 
3 
ampling module are given in the following three subsections, re- 

pectively. 

.2. The time boosting strategy 

.2.1. Downsampling module 

Inspired by the initial block in ENet [16] , we use the Downsam- 

ling module in the context branch to obtain features. The partial 

onvolution is replaced by maxpooling, which can reduce the com- 

utation cost. The module is illustrated in Fig. 3 . 

We denote the number of input, output channels as C in , C out , 

nd the number of output channels of convolutional layers and 

axpooling layers as C con v , C maxp . We have 

 out = C con v + C maxp , (1) 

here C maxp = { 0 , C in } . 
The Downsampling module works as a feature map generator, 

ho produces expanded features with lower dimensions. As we 

dopt C maxp feature maps coming from maxpooling, the compu- 

ation cost is lower than the traditional convolutional way. When 
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Fig. 4. DUpsampling module. 
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 out > C in , C con v = C out −C in and C maxp = C in , when C out ≤ C in , all fea-

ure maps are generated through convolution. 

Then, the outputs of the two layers are concatenated, batch nor- 

alized, and activated by ReLU in series. In this paper, we set the 

onvolutional kernel as 3 × 3 and the maxpooling layer as 2 × 2 , 

oth walks with stride 2. 

.2.2. Dense block with ghost module 

a. Dense Connection 

DenseNet [25] puts forward the dense connection, which real- 

zes feature reuse by connecting features across channels. EDANet 

17] also utilizes the strategy of dense connection, and the differ- 

nce is that EDANet adopts the dense connection between mod- 

les using asymmetric convolution. Each module connects the in- 

ut features with the newly learned features to form the final out- 

ut. Since each module is only responsible for obtaining relatively 

ew new feature maps, the calculation cost can be greatly reduced 

nd the prediction speed is improved. 

Hence, in this paper, we propose the dense block, which suc- 

eeds the same dense connection method as EDANet. But instead 

f using asymmetric convolution, we adopt a more lightweight 

odule, which names Ghost module. 

b. Ghost Module 

Given the input data X ∈ R h ×w ×c , where c is the number of in-

ut channels, h and w are the height and width of input data re-

pectively. The operation of generating n feature maps for convo- 

ution layer can be expressed as 

 = X ∗ f + b, (2) 

here ∗ is the convolution operation, b is the bias term, Y ∈ 

 

h ′ ×w ′ ×n is the output feature map of size h ′ and w 

′ with n chan-

els, and f ∈ R c×k ×k ×n is the convolution filter with size k × k . In

his convolution process, since the number of convolution kernels 

 and channels c are usually very large, the number of floating- 

oint operations required is as many as n · h ′ · w 

′ · c · k · k . This is
here time consumes. 

Reducing the number of convolutional channels is promising 

or our real-time request. The output feature maps of convolution 

ayer usually contain a lot of redundancy, which does not meet our 

ightweight requirements. GhostNet [28] uses ordinary convolution 

lters to produce fewer feature maps Y ′ ∈ R h 
′ ×w ′ ×m . To further ob- 

ain the n desired feature maps, GhostNet applies a series of cheap 

inear operations on each original feature map in Y ′ to generate 
he ghost feature maps Y Ghost according to: 

 

Ghost 
i j = �i, j 

(
y ′ i 

)
, ∀ i = 1 , · · · , m, j = 1 , · · · , s. (3)

Where y ′ 
i 
is the i th original feature map in Y ′ , and �i, j is the

jth linear operation on y ′ 
i 
, which is used to generate the jth Ghost

eature map y Ghost 
i j 

of y ′ 
i 
. Finally, the original feature maps Y ′ and 

he ghost feature maps Y Ghost generated by Eq. 3 are concatenated 

o produce the final result as Y ′′ . 

.2.3. DUpsampling module 

Bilinear interpolation is a commonly used method to upsample 

eature maps in decoder. However, this method is very simple and 

ata independent, which may lead to sub-optimal results. In or- 

er to achieve better segmentation effect, we adopt DUpsampling 

29] instead of bilinear interpolation for upsampling. The flowchart 

f DUpsampling is shown in Fig. 4 . Given feature maps with size 

f H ×W ×C, N filters of 1 × 1 convolution are applied on the fea-

ure maps to produce new encoded feature maps with a size of 

 ×W × N. Then the encoded feature maps are reshaped to the 

ize 2 H × 2 W × N/ 4 , which is the output feature maps of the DUp-

ampling module. Generally, DUpsampling can upsample the fea- 

ure map into any multiples along spatial dimensions. In this pa- 

er, the feature maps in the context branch and the fused feature 
4 
ap are enlarged 2 times and 8 times along the spatial dimension, 

espectively. 

. Experiments 

In this section, we first introduce two new datasets for public 

sage, which are NWPU_YRCC_EX and NWPU_YRCC2. Then we give 

 brief description of the Alberta River Ice Segmentation Dataset. 

urthermore, we conduct experiments on those three datasets for 

oth FastICENet and competing methods. Our main evaluation in- 

icators are chosen as mIoU and FPS. Lastly, we perform ablation 

xperiments on NWPU_YRCC_EX to verify the effectiveness of our 

roposed model. 

.1. Dataset description 

.1.1. NWPU_YRCC_EX 

NWPU_YRCC_EX is extended from NWPU_YRCC [26] . 

WPU_YRCC dataset is composed of 814 images selected from the 

ideos captured at the NingxiaInner Mongolia reach of the Yellow 

iver from November 2015 to March 2019 using UAVs. The images 

f NWPU_YRCC are labeled pixel by pixel into three categories: 

ce, water and shore, as shown in Fig. 5 (a). The size of the images

s 1600 × 640. Considering the balance of data distribution, we 

urther selected 73 images from the original videos and images 

s a supplement to the NWPU_YRCC. Totally, there are 887 fine 

abeled images. We name the dataset NWPU_YRCC_EX, and split it 

ith 524 images for training, 180 images for validation and 183 

mages for testing. The NWPU_YRCC_EX can be downloaded on 

ttps://github.com/nwpulab113/NWPUYRCCEX . 

.1.2. NWPU_YRCC2 

NWPU_YRCC2 [27] dataset is composed of 1525 images selected 

rom the videos captured at the NingxiaInner Mongolia reach of 

he Yellow River from November 2015 to March 2019 using UAVs. 

he size of the images is 1600 × 640. The difference between 

WPU_YRCC2 and NWPU_YRCC_EX is that we divide the ice into 

hore ice and drift ice according to the actual needs. Sample im- 

ges and 4-class labels are shown in Fig. 5 (b). And we divide the 

ata into training set, validation set and test set according to the 

atio of 3:1:1. The NWPU_YRCC2 can be downloaded on . 

.1.3. Alberta river ice segmentation dataset 

The Alberta River Ice Segmentation Dataset [12] is captured by 

AVs and bridge-mounted game cameras from two Alberta rivers 

uring the winters of 2016 and 2017. The images of Alberta River 

ce Segmentation Dataset are labeled into three categories: drift 

ce, anchor ice, and water, as shown in Fig. 6 . Most of the images

re of size 1281 × 1081. Since the pixel-wise labeling are time con- 

uming, there are only 50 labeled images. We randomly crop these 

ictures into 800 × 320. Finally, we got 198 RGB sample images 

ith fully annotated labels. 

.2. Training and optimization 

The proposed network is implemented by Pytorch and run 

n the workstation with Intel Core CPU i5-7500 (3.40GHz) and 

https://github.com/nwpulab113/NWPUYRCCEX
https://github.com/nwpulab113/NWPUYRCC2
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Fig. 5. (a) Visualization of images and labels of the Yellow River ice in NWPU_YRCC_EX. Black indicates shore, green indicates water, and purple indicates ice. (b) Visualization 

of images and labels of the Yellow River ice in NWPU_YRCC2. Black represents the shore, green represents the water, blue represents the shore ice, and purple represents 

drift ice. 

Fig. 6. The river ice image in Alberta River Ice Segmentation Dataset and its label where white, gray and black pixels respectively denote anchor ice, anchor ice, and water. 

5 



X. Zhang, Z. Zhao, L. Ran et al. Signal Processing 212 (2023) 109150 

Table 1 

Comparison with state-of-the-art methods on the NWPU_YRCC_EX dataset. 

method IoU( % ) mIoU( % ) speed(FPS) parameters(k) 

ice water other 

ENet [16] 91.581 87.946 90.298 89.942 40.23 356 

CGNet [31] 92.262 87.959 92.561 90.927 32.09 492 

ICENet [26] 91.583 84.891 88.253 88.112 37.61 10694 

DABNet [33] 91.652 87.140 91.370 90.054 49.48 752 

MobileV3 [34] 87.575 80.448 86.580 84.868 42.31 3250 

FPENet [35] 86.789 82.251 81.793 83.611 61.83 114 

FSSNet [36] 91.234 86.800 89.408 89.147 62.13 173 

LEDNet [37] 92.633 88.328 92.839 91.267 28.22 913 

ContextNet [30] 92.633 87.121 85.006 87.163 101.11 874 

FastSCNN [18] 89.339 87.077 84.976 87.131 112.04 1136 

ERFNet [38] 92.871 89.330 92.507 91.569 24.64 2064 

LinkNet [32] 91.930 87.861 91.543 90.445 51.61 11,534 

Baseline(BiSeNet) [11] 91.221 87.610 90.337 89.723 44.75 14,090 

STDC-2 [19] 92.790 88.507 92.257 91.183 60.82 16,073 

PP-LiteSeg-T2 [39] 91.118 86.912 90.595 89.540 80.40 13240 

PIDNet-S [20] 91.640 87.430 91.560 90.210 72.34 7717 

PIDNet-L [20] 92.690 88.640 92.050 91.250 53.75 37,306 

FastICENet(acc) 92.900 89.650 93.020 91.860 44.50 14,090 

FastICENet 92.100 88.120 92.080 90.770 94.84 969 
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VIDIA GTX 1080 Ti. We adopt the data augmentation methods of 

andom_crop and random_mirror in the training process. The ini- 

ial training rate is set to 5e-4, the batch size is 16, each model 

s trained 10 0 0 epochs. The loss function is the CrossEntropy Loss, 

hich is calculated as follows: 

 = − 1 

N 

∑ 

i 

M ∑ 

c=1 

y ic log(p ic ) (4) 

here N represents the number of pixels, i represents the index 

f pixels, M represents the number of categories, c represents the 

ndex of categories, y ic is the label of pixel i , when the category of

ixel i is c, y ic is 1, otherwise it is 0. p ic represents the prediction

robability that the pixel i belongs to the category c. In the training 

rocess Adam optimizer is utilized to optimize the model. 

.3. Evaluation criteria 

mIoU and FPS are two commonly used evaluation criteria for 

eal-time semantic segmentation. mIoU is mean intersection over 

nion, which represents the accuracy of segmentation. FPS is frame 

er second, which represents the speed of segmentation. In this 

aper, mIoU and FPS are as the main criteria to evaluate the perfor- 

ance of the proposed network and other comparison methods. In 

ddition, we also record the number of parameters (in kilo bytes) 

f these networks. 

.4. Results and evaluation 

To verify the effectiveness and superiority of FastICENet, we 

ompare it with the most recent fast semantic segmentation net- 

orks on NWPU_YRCC_EX, NWPU_YRCC2, and Alberta River Ice 

egmentation Dataset. Their performance is measured by the same 

achine under the same conditions. We take BiSeNet [11] as our 

aseline. FastICENet(acc) comes from BiSeNet, where the bilinear 

nterpolation upsampling is replaced by DUpsampling. The com- 

arison results are shown in Table 1 , Table 2 , and Table 3 , the top

hree results are marked in red, green and blue respectively 

.4.1. NWPU_YRCC_EX 

We can see that our method FastICENet(acc) achieves the high- 

st segmentation accuracy (i.e., 91.860 % mIoU), but its speed is 

low. FastICENet performs much better with the speed 94.840 

PS, which is close to the fastest segmentation network, such as 
6 
ontextNet [30] and FastSCNN [18] . Its accuracy achieves 90.770 % 

IoU, which is about 3 % higher than that of the two networks.And 

astICENet is close to CGNet [31] , LinkNet [32] and PIDNet-S [20] in 

ccuracy, but our segmentation speed is far ahead of these net- 

orks. At the same time, we observed that the speed of model 

egmentation is not negatively correlated with the number of 

arameters. We analyse that although some models have fewer 

arameters, their operation of these parameters is more com- 

lex, which will also cause the loss of segmentation speed. In 

he subsequent research, we can consider further accelerating the 

egmentation speed while maintaining the current segmentation 

ccuracy. 

We visualize the segmentation results of the three fastest net- 

orks FastSCNN, ContextNet and FastICENet on NWPU_YRCC_EX. 

he reason why we choose these three networks is that they are 

imilar in segmentation speed and far ahead of other networks. 

he visualization results are shown in Fig. 7 . The first image in 

ach line represents the original image, the middle three images 

epresent the segmentation results of FastSCNN, ContextNet and 

astICENet respectively, and the last image represents the ground- 

ruth. It can be seen that among the three networks with the 

astest segmentation speed, our method accuracy is better than 

he other two networks. The most obvious parts have been marked 

ith black boxes in the Fig. 7 . 

.4.2. NWPU_YRCC2 

Due to the need to divide ice into shore ice and drift ice, we 

lso carried out experiments on NWPU_YRCC2 dataset. The results 

re shown in Table 2 . This dataset needs to distinguish two dif- 

erent ice, which leads to the decline of the accuracy of all net- 

orks, but it can be seen that our FastICENet(acc) still achieves 

he second highest accuracy (i.e., 81.871 % mIoU), but its segmenta- 

ion speed is far faster than ICENetv2 [27] . ContextNet [30] and 

astSCNN [18] have the fastest speed, but their accuracy is low. 

ur FastICENet achieves a trade-off between speed and accuracy, 

hich can have the speed (i.e., 108.78 FPS) similar to the fastest 

ethod and achieve the accuracy of 80.790 % mIoU at the same 

ime. According to the specific task of NWPU_YRCC2, our model 

astICENet(acc) can accurately distinguish shore ice and drift ice, 

t has the highest IoU in the class of drift ice, and also ranks high

n the class of shore ice. At the same time, our model FastICENet 

an also accurately distinguish drift ice and shore ice, and greatly 

mprove the segmentation speed. 
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Table 2 

Comparison with state-of-the-art methods on the NWPU_YRCC2 dataset. 

method IoU( % ) mIoU speed parameters 

Drift Ice Shore Ice Water Other 

ENet [16] 79.152 82.729 87.096 76.505 81.371 40.86 356 

CGNet [31] 78.458 79.646 87.061 76.799 80.491 34.07 492 

DABNet [33] 75.670 79.692 86.694 78.484 80.119 53.63 752 

FPENet [35] 77.393 73.094 85.543 71.530 76.890 65.01 114 

FSSNet [36] 77.595 77.953 87.520 75.463 79.633 63.96 173 

LEDNet [37] 78.431 81.712 87.748 79.340 81.808 31.20 913 

ContextNet [30] 74.352 74.930 83.894 78.150 77.832 116.63 874 

FastSCNN [18] 74.116 77.083 82.959 75.299 77.364 127.63 1136 

ERFNet [38] 80.813 81.772 89.412 74.323 81.580 26.69 2064 

LinkNet [32] 81.561 80.562 89.774 73.254 81.288 56.07 11,534 

ICENetv2 [27] 81.127 81.582 90.484 80.548 83.435 30.69 12803 

Baseline(BiSeNet) [11] 72.623 84.026 87.282 76.441 80.093 59.85 14,090 

STDC-2 [19] 80.323 81.807 89.015 79.234 81.460 69.33 16,073 

PP-LiteSeg-T2 [39] 78.875 80.333 87.411 77.806 79.992 91.65 13240 

PIDNet-S [20] 78.840 80.333 86.707 75.279 80.292 85.41 7717 

PIDNet-L [20] 79.757 81.259 87.706 76.147 81.217 60.354 37,306 

FastICENet(acc) 81.974 80.400 89.709 79.799 81.871 51.13 14,090 

FastICENet 79.337 80.832 87.245 75.746 80.790 108.78 969 

Table 3 

Comparison with state-of-the-art methods on Alberta River Ice Segmentation Dataset. 

method IoU( % ) mIoU( % ) speed(FPS) parameters(k) 

water anchor ice drift ice 

ENet [16] 95.64 70.88 75.73 80.75 46.15 356 

CGNet [31] 95.52 72.28 77.05 81.62 68.07 492 

DABNet [33] 95.61 72.45 78.31 82.13 103.00 752 

FPENet [35] 95.01 69.14 75.54 79.89 88.18 114 

FSSNet [36] 95.18 66.94 71.99 78.04 124.14 173 

LEDNet [37] 95.13 71.90 77.64 81.56 60.14 913 

ContextNet [30] 94.90 68.60 72.44 78.64 172.83 874 

FastSCNN [18] 95.32 68.60 70.43 78.11 198.16 1136 

ERFNet [38] 95.69 72.48 77.63 81.94 50.72 2064 

LinkNet [32] 95.45 72.83 78.08 82.12 109.5 11,534 

Baseline(BiSeNet) [11] 95.09 72.03 77.81 81.24 74.81 14,090 

STDC-2 [19] 95.46 71.86 77.71 81.86 86.65 16,073 

PP-LiteSeg-T2 [39] 94.75 70.17 75.71 80.39 114.55 13240 

PIDNet-S [20] 94.98 71.83 76.98 81.27 121.90 7717 

PIDNet-L [20] 95.87 72.66 77.86 82.10 90.58 37,306 

FastICENet(acc) 95.96 73.88 78.33 82.34 73.50 14,090 

FastICENet 95.57 72.28 77.46 81.77 159.82 969 

Fig. 7. Visual image comparison on NWPU_YRCC_EX with the three fastest methods. 
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On NWPU_YRCC2, we still visualize the segmentation results of 

he three fastest networks FastSCNN, ContextNet and FastICENet. 

he visualization result are shown in Fig. 8 . The first image in 

ach line represents the original image, the middle three images 

epresent the segmentation results of FastSCNN, ContextNet and 

astICENet respectively, and the last image represents the ground 

ruth. It can be seen that among the three networks with the 

astest segmentation speed, our method can better identify drift 
7 
ce and shore ice. The most obvious parts have been marked with 

lackboxes in the Fig. 8 . 

.4.3. Alberta river ice segmentation dataset 

We compare our methods with the most recent fast seman- 

ic segmentation networks on the Alberta River Ice Segmentation 

ataset. In the images of this dataset, the IoU of water is high due 

o the great difference in the spectral properties of water and the 
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Fig. 8. Visual image comparison on NWPU_YRCC2 with the three fastest methods. 

Fig. 9. Visual image comparison on Alberta River Ice Segmentation Dataset with the three fastest methods. 
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ther two kinds of ice. Because the difference between drift ice and 

nchor ice is small, the IoU of all networks on these two kinds of 

ce is low. The comparison results are shown in Table 3 . We can

ee that ContextNet [30] and FastSCNN [18] have the fastest speed. 

owever, due to the small amount of data and the similar spec- 

ra of the two kinds of ice, the accuracy of ContextNet [30] and 

astSCNN [18] are very low. But it can be seen that our Fas- 

ICENet(acc) still achieves the highest accuracy (i.e., 82.34 % mIoU), 

hile FastICENet has greatly improved the speed to 159.82 FPS, it 

till maintains high accuracy (i.e., 81.77 % mIoU). 

On Alberta River Ice Segmentation Dataset, we visualize the 

egmentation results of the three fastest networks FastSCNN, Con- 

extNet and FastICENet. The visualization results are shown in 

ig. 9 . The first image in each line represents the original im- 

ge, the middle three images represent the segmentation results 

f FastSCNN, ContextNet and FastICENet respectively, and the last 

mage represents the ground truth. It can be seen that among the 

hree networks with the fastest segmentation speed, our method 

an better identify drift ice and anchor ice. The most obvious parts 

ave been marked with red boxes in the Fig. 9 . 
Table 4 

Ablation experiment On NWPU_YRCC_EX. 

method IoU( % ) 

ice water o

Baseline [11] 91.221 87.610 9

Baseline + DUp(FastICENet(acc)) 92.900 89.650 9

Baseline + DUp+DS 91.980 87.670 9

Baseline + DUp+DS+EDA 92.360 88.670 9

Baseline + DUp+DS+Ghost 92.400 88.120 9

FastICENet 92.100 88.120 9

8 
.5. Ablation study 

To show the effectiveness of the submodules in our net- 

ork, we conducted a set of comparative experiments on 

WPU_YRCC_EX. We take BiSeNet [11] as our baseline. Base- 

ine+DUp means that replacing the commonly used bilinear in- 

erpolation in the baseline with DUpsampling, which is our Fas- 

ICENet(acc). Baseline+DUp+DS means that replacing the convolu- 

ion downsampling in the Baseline+DUp with our Downsampling 

odule. Baseline+DUp+DS+EDA means adding EDA module in [17] , 

.e. the dense connection block based on asymmetric convolution 

odule to Baseline+DUp+DS. Baseline+DUp+DS+Ghost represents 

dding our dense connection block based on ghost module to Base- 

ine+DUp+DS. Finally, FastICENet is obtained by halving the num- 

er of the channels in the context branch and the spatial branch 

n Baseline+DUp+DS+Ghost. The results of ablation experiment are 

hown in Table 4 . 

This experiment verifies the effectiveness of these modules. 

nder the joint action of these modules, the final model signif- 

cantly improves the segmentation speed, but the accuracy de- 
mIoU( % ) speed(FPS) parameters(k) 

ther 

0.337 89.723 44.750 14,090 

3.020 91.860 44.500 14,090 

1.300 90.320 76.370 1440 

2.360 91.130 56.420 2620 

1.280 90.600 70.000 1820 

2.080 90.770 94.840 969 
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reases slightly. DUpsampling improves the accuracy by 2% only 

ith slight time attenuation. Then the Downsampling module 

reatly improves the segmentation speed, but its accuracy loss is 

arge. So finally, EDA and Ghost modules are used to improve the 

egmentation accuracy on the premise of minimizing the speed 

oss. In all experimental settings, FastICENet achieved the best 

peed with a small precision reduction. 

. Conclusion 

In this paper, an effective real-time river ice semantic segmen- 

ation network named FastICENet is proposed. To address the char- 

cteristics of scale diversity, FastICENet adopts a two-branch struc- 

ure with a finer spatial branch and a deep multi-scale semantic 

ontext branch. While the context branch is time-consuming, to re- 

uce the computation cost, we adopt a new Downsamping module 

nd a very lightweight dense connection block with ghost module. 

hese measures significantly reduce the computational complex- 

ty, meanwhile, keep a high segmentation accuracy. To improve the 

egmentation accuracy of small ice blocks, a learnable upsampling 

ethod called DUpsampling is used to restore the low-resolution 

eature image to the original size. The experimental results on 

hree datasets all show that FastICENet can greatly improve the 

egmentation speed with a slightly decrease in accuracy, which 

eets the requirements of accurate and real-time. FastICENet has 

he best performance in recent real-time segmentation methods. 

More explorations on other application scenarios need to be 

one. As the datasets for ice segmentation contains relatively fewer 

ata than traditional datasets, such as Cityscapes [40] for scene un- 

erstanding, the stability and performance of our model should be 

he subject of further investigation. 

In future work, we will expand our dataset, which may improve 

ur segmentation accuracy. At the same time, we will also study 

ow to improve segmentation speed while better maintaining seg- 

entation accuracy. 
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