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Abstract—Visual navigation is a critical task in robotics and
artificial intelligence. In recent years, reinforcement learning-
based approaches have gained popularity for visual navigation.
However, existing methods lack flexibility in learning multiple
navigation targets and suffer from catastrophic forgetting. To
address these challenges, we propose a novel paradigm called
”target incremental visual navigation” and introduce a method
called Optimal Policy Replay (OPR). Target incremental visual
navigation aims to study the performance of visual naviga-
tion in continuous learning of navigation targets. OPR enables
continuous learning of navigation targets without the need for
relearning all targets. Our method divides the learning process
into on-policy and off-policy stages and stores only the optimal
experiences in memory. Experimental results show that OPR
effectively alleviates catastrophic forgetting and achieves good
performance with a small memory size.

Index Terms—visual navigation, catastrophic forgetting, rein-
forcement learning, continual learning

I. INTRODUCTION

Visual navigation is a fundamental problem in robotics

and artificial intelligence. The target-driven visual navigation

task involves commanding an agent to search for a given

object in a 3D scene, using its egocentric camera to navigate

around obstacles and determine the next step. In recent years,

visual navigation has attracted increasing research interest

in the fields of artificial intelligence and computer vision,

with numerous potential applications such as automated home

services, warehouse management, and the hotel industry.

Traditional approaches rely on map-based visual navigation

methods. These methods explicitly decompose the navigation

task into a set of sub-tasks, including mapping, localization,

planning, and motion control [1]–[4], [21]. Due to the recent

success of reinforcement-learning-based methods in robotic

tasks [22]–[25], many mapless visual navigation works based

on reinforcement learning have been proposed [7]–[12]. These

methods typically take visual information and the navigation

target as inputs and output the optimal actions, and the agent

should take at each time step to achieve the specified target.

Unlike traditional methods, reinforcement-learning-based ap-

proaches directly infer solutions from the current input, which

is an end-to-end approach. As such, they require minimal

manual engineering and serve as the foundation for new AI-

driven visual navigation tasks.

However, current reinforcement-learning-based visual nav-

igation methods typically employ training approaches that

randomly select a navigation target at the beginning of each

training task when learning multiple navigation targets. In this

approach, the network model is capable of learning multiple

navigation targets simultaneously. But when the agent is to

expand the scope of navigation targets, existing methods must

mix new and old goals and relearn. This process not only

leads to significant resource wastage but also restricts the

applicability of learning-based navigation algorithms. Hence,

the model requires the capability of continuous learning of

navigation targets. To investigate this matter, we propose a

novel visual navigation paradigm known as ’target incremental

visual navigation.’ In this paradigm, we enable the agent to

learn navigation targets continuously in a predefined order,

rather than randomly acquiring them.

To address the problem, we introduce a novel method

called OPR (Optimal Policy Replay). OPR enables continuous

learning of navigation targets without the need for relearning

all targets, thereby mitigating resource wastage and expand-

ing the potential applications of reinforcement-learning-based

navigation algorithms.This method uses on-policy to learn the

current navigation target, uses off-policy to learn only the

learned navigation target, and stores only the optimal episode
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in memory to ensure the efficiency of off-policy. We found

that the OPR method can effectively alleviate the catastrophic

forgetting of visual navigation.

In summary, our main contributions are as follows:

1.We introduce a novel paradigm called ”target incremental

visual navigation” to address the challenge of visual naviga-

tion.

2. We introduce a novel framework OPR for target incre-

mental visual navigation, which divides the algorithm into on-

policy learning and off-policy learning. Additionally, the mem-

ory stores only the optimal policy episode. OPR effectively

alleviates catastrophic forgetting in visual navigation.

3.OPR also has well performance with a small memory,

indicating its broad applicability in various scenarios.

II. RELATED WORKED

A. Visual Navigation

Visual navigation is one of a fundamental problems for

mobile robots. Traditional navigation methods typically use

environmental maps for navigation and divide navigation tasks

into three steps: mapping, localization, and path planning [1]–

[6]. With the development of reinforcement learning, rein-

forcement learning has been applied to robot tasks, and nav-

igation methods based on reinforcement learning are popular

because they solve complex tasks through end-to-end methods.

Since Zhu et al [7]. propose an end-to-end navigation model

based on deep learning, which implicitly integrates localiza-

tion, mapping, exploration, and semantic recognition, target-

driven visual navigation has developed rapidly, and many

efficient models have been proposed. Wortsman et al. propose

a meta-learning based method [8] to dynamically adjust the

navigation policy according to changes in the environment, and

the agent learns self-supervised interaction losses to perform

effective navigation. Lee et al. propose object relation graphs

to learn spatial relationships between the classes that appear

in navigation to better guide agents in navigation [9]. They

further propose a novel Visual Transformer network (VTNet)

to extract information feature representations in navigation

[10]. This information feature representation not only encodes

the relationship between objects, but also establishes a strong

correlation with the navigation signal, which can better guide

the agent’s next action.

In the task setting of multiple navigation goals, the above

tasks randomly select navigation tasks before the start of each

task, which can avoid catastrophic forgetting, but this method

greatly limits the flexibility of the model. In actual situations,

the model needs to have the ability of target incremental visual

navigation.

B. Continual Reinforcement Learning

The issue of catastrophic forgetting in neural networks

has gained significant recognition, where after training on

the current task and directly training on the next task, the

model exhibits high recognition accuracy on the new task

but significant degradation in recognition accuracy on the

learned tasks. In recent years, people have renewed interest

in overcoming catastrophic forgetting in RL. Kirkpatrick et

al. proposed the Elastic Weight Consolidation (EWC) method

[13], which restricts important weights from past tasks to

change more slowly when learning new tasks. Rolnick et

al. proposed the Continual Learning with Experience and

Replay (CLEAR) method [14], which uses v-trace importance

sampling to prevent catastrophic forgetting. Atkinsonf et al.

proposed the Reinforcement Pseudo-Rehearsal (RePR) method

[15], which generates pseudo-samples from a generative model

to maintain knowledge about past tasks in the model. Kessler

et al. proposed the UNcertainty guided Continual Learning

(UNCLEAR) method [16], which preserves past knowledge by

retaining the parameters of the output linear layer. Fernando

et al. proposed the PathNet method [17], which uses genetic

algorithms to find a path from the input to the output for each

task in the neural network, and separates the network parts

used at the parameter level from the new task training.

Most of the existing methods based on experience replay

use FIFO or reservoir sampling to store experience. These

methods cannot cope with the task of target incremental visual

navigation very well, because of the limited memory size, they

will forget past experience, or affect the learning of new target

due to a large number of suboptimal experiences. Therefore,

we only store the optimal experience in memory to ensure the

efficiency of the model in off-policy.

III. METHOD

A. Problem Formulation

A navigation task consists of a scene S, an initial point

p, and a target object o. The agent’s objective is to find the

target object o in the 3D environment from the initial position

within a given number of steps. The agent’s action space is

limited to six actions: MoveAhead, RotateLeft/RotateRight,

LookDown/LookUp, Done. At each step, the agent receives an

egocentric RGB image s from the scene and a target object o

and the agent select an action from action space. A collection

of all the steps from the beginning to the end of a task is called

an episode.The agent successfully completes the navigation

task if it performs the ”done” action when within 1 meter of

an instance of the target object class and within the agent’s

field of view.

Follw the setting of the target incremental visual navigation,

we sequentially provide the target object to be learned. Once

a target object has been learned, it will not be re-learned when

learning subsequent targets.

B. Method Overview

The OPR utilizing new experiences to learn the policy

for the current target and replayed experiences to learn the

policy for the learned target. Unlike typical algorithms based

experience replay, we only store the optimal experiences in

the memory to ensure that the agent can review the optimal

policy for learned navigation targets when learning new ones.

We train a state feature extraction network and a value-policy

network [9]. The input of the value-policy network is the

output of the state feature extraction network, which is the
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Fig. 1. Algorithm flow overview: The OPR algorithm consists of two stages,
namely the on-policy learning stage and the off-policy stage. During the on-
policy stage, the agent interacts directly with the environment to learn the
policy for the current navigation target. In the off-policy stage, the agent
learns the optimal policy for the learned target by utilizing the episode stored
in memory. The solid lines in the figure depict the steps executed during each
training iteration, while the dashed lines represent the steps executed after a
navigation target has been learned.

high-level feature map of the current image. The outputs of

the whole network is two functions: policy function π(a|s)
and Q-function Q(s|a). The entire training process is divided

into two stages: the on-policy stages and the off-policy stages.

In the on-policy stages, the agent learns the policy for the new

target through interaction with the environment, while in the

off-policy stages, the agent reviews the learned policy using

the optimal experiences of the learned navigation targets stored

in the memory to prevent catastrophic forgetting.

C. On-policy learning

In this stage, our objective is to train the agent to learn

the optimal policy for the current target.When learning a

new navigation target policy, the agent directly interacts with

the environment, Training proceeds as in [19] by the A3C

algorithm and the policy gradient is given by:

Gon−policy =

Tn∑
t=1

(Qπ
θ (st, at)− V π

θ (st))∇logπθ(at|st) (1)

where θ is the parameters of the neural network,γ ∈
[0, 1) is discount factor, πθ(at|st) is (current) policy,

Qπ
θ (at|st) is an estimate of action-value function, V π

θ(st)
=∑k

i=0 πθ(at|st)Qπ
θ (at|st)is an estimate of the value function,

k is the number of action.The pseudocode of on-policy flow is

shown in algorithm 1. The agent chooses an initial state and

a navigation target at the beginning of each time task, subse-

quently interacts with the environment during task execution

until agent selects the action Done or reaching the maximum

step, and updating the network based on the episode once the

task concludes.

D. Off-policy learning

In the off-policy stage, unlike the common off-policy al-

gorithm, we do not collect episode during on-policy learning.

Instead, we collect episode after the training when a navi-

gation target reaches its maximum. In this way, the collected

Algorithm 1 OPR:on-policy

Reset gradients dθ ← 0
Initialize parameters θ

′ ← θ
get initial state x0 and navigation target o.

while not select done or not exceed the maxinum step do
get action at = π(st|θ′

) and reward rt = R(·|st, at)
get Q function Q(st, at) and next state si+1 = f(·|at)

end while
update network parameter θ ← θ + αGon−policy

experience is the optimal experience for the current navigation

target (assuming that the success rate of the task increases with

the number of training times), which can minimize forgetting.

Episode stored in memory, episode = {(st, at, rt, πt, Qt)|1 ≤
t ≤ T} , target = (target1, target2, ..., targetn), T is total

step of episode, m is the memory size, The expression of

memory is as follows:

Memory =

n∑
i=1

m

n

T∑
j=1

(st, at, rt, πt, Qt) (2)

From a policy perspective, what is stored in memory is:

Memory = (π1, π2, π3, . . . , πn) (3)

The off-policy stage occurs several times after the on-policy

stage has ended. Training proceeds as in [20] by the ACER

off-policy learning algorithm, which use Retrace Qret(at|st)
estimate Qπ(at|st) and importance weight truncation with

bias correction to reduce variance for off-policy distribution

shifts. While ACER off-policy algorithm was designed to

reduce variance and improve training stability, we find it also

successfully corrected the distribution shift corresponding to

the replay episode.Formally, the policy gradient of ACER off-

policy algorithm is given by:

Goff−policy = ρt∇θlogπθ(at|xt)[Q
ret(xt, at)− Vθ(xt)]+

E(a ∼ π)

(
[
ρt(a)− c

ρt(a)
]+∇θlogπθ(a|xt)[Qθ(xt, a)− Vθ(xt)]

)
(4)

where ρt is the truncated importance weight, ρt =

min (c, ρt) with pt = π(at|xt)
μ(at|xt)

, [x]+ = x if x > 0 and it

is zero otherwise(with c constants). On the basis of ACER,

we have added two losses [14], namely Lpolicy−loss and

Lvalue−loss. These two losses use KL divergence and L2 norm

respectively to fit the differences between the target policy

and the behavioral policy. The pseudocode of on-policy flow

is shown in algorithm 2. The agent selects a episode from

memory, and uses this episode to update network parameters

through ACER’s off-policy algorithm.

E. Overall process

In this approach, a set of targets is first defined, and each

target is iterated over. During each target iteration, policy

updates are performed by invoking the on-policy learning

(Algorithm [1]). In the process of policy updating, according
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Algorithm 2 OPR:off-policy

Reset gradients dθ ← 0
Initialize parameters θ

′ ← θ
get an episode from memory {(st, at, rt, πt, Qt)|t ∈
(1, . . . , k)} .

for i ∈ (1, ..., k) do
calculate Retrace Q(st, at)

ret ← rt + γQret

update network parameter θ ← θ + αGoff−policy

end for

to the pre-defined playback ratio r, a random number k is gen-

erated using Poisson distribution, which is used to determine

the number of iterations of the off-policy learning algorithm

(Algorithm [2]). Through multiple off-policy optimizations,

past experience can be more effectively utilized. Next, at

the end of each target iteration, we collect a certain amount

of replay episode and store it in memory. Specifically, by

performing a certain number of environment interactions, we

collect the state st, action at, reward rt, policy πt and Q-value

estimate Qt for each round are stored stand up, the memory

capacity of each target is m
n episodes. After collecting the

optimal trajectory, agent continues to learn the next navigation

target. Through this algorithm, we can learn the learned policy

while learning the new target policy. This approach takes full

advantage of both online and offline policy optimization to

improve the efficiency and performance of the algorithms. The

pseudocode of complete algorithm flow is shown in algorithm

3.

Algorithm 3 OPR

//Assume ratio of replay r.

Define target ∈ (1, ..., n) .

for i ∈ (1, . . . , n) do
while The maximum number of episodes not reach do

Call OPR on-policy, Algorithm[1]

k← Possion(r)
for j ∈ (1, ..., k) do

Call OPR off-policy, Algorithm[2]

end for
end while
for j ∈ (1, . . . , m

n ) do
Collect episodes (st, at, rt, πt, Qt) and store them in

memory

end for
end for

IV. EXPERIMENTS

In our study, we trained and evaluated our approach in the

AI2-THOR environment [7], which consists of 10 navigation

targets, namely [’AlarmClock’, ’Book’, ’Bowl’, ’CoffeeMa-

chine’, ’Kettle’, ’Plate’, ’Pan’, ’Toaster’, ’Pot’, ’Fridge’]. We

used the reward function proposed in [8], where finding an

object rewards the agent with 5, and taking a step results in

a reward of -0.01. Our experiments focus on the plasticity

Fig. 2. The experimental results of training a agent with actor-critic structure
on multiple navigation targets without using experience replay. The x-axis
represents the time steps of all tasks, and the y-axis represents the success
rate on each task. Our results show that this approach leads to catastrophic
forgetting.

and stability of the network to new navigation targets, so

our experiments are carried out in the same environment, in

order to avoid the interference of different environments on

the navigation model

A. Baseline

we present the experimental results of a actor-critic network

trained without using experience replay. The curve of the net-

work is presented in Figure 1, which shows the performance of

the network on all tasks. Each color represents the performance

on a different task, and the background color indicates the task

on which the network is currently being trained. We saved

10 models for each navigation target and tested them on all

previously learned navigation targets. Our results show that

when experience replay is not used, the model forgets the

previously learned tasks.

B. OPR

Figure 2 displays the experimental results of using OPR to

address catastrophic forgetting in visual navigation. The figure

shows that the model trained with OPR performs significantly

better than the model trained without OPR. One reason for

this is that OPR uses experience replay, allowing the model

to learn previously learned navigation targets while learning

new ones. Additionally, OPR only saves the optimal policy

in memory, avoiding the issue of forgetting caused by the

standard FIFO policy or the existence of many suboptimal

trajectories in memory as proposed in [18] using the Global

Distribution Matching method.

C. Limited-size Memory

In reality, the storage space of memory is limited, and it is

impossible to store infinitely. We trained a total of 10000000

episodes, and set up 4 different sizes of memory to observe

the performance changes, namely 50k, 30k, 5k and 2k. In

terms of performance, we observe that the network exhibits

very good performance when the memory size is 50k and 30k.
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Fig. 3. The experimental results of training a agent with OPR. Our results
show that OPR greatly alleviates catastrophic forgetting in visual navigation.

TABLE I
QUANTITATIVE RESULTS.WE USE THE AVERAGE SUCCESS RATE TO

QUANTITATIVELY EVALUATE THE PERFORMANCE OF EACH METHOD

BASED ON ALL THE ABOVE RESULTS.

AlarmClock Book Bowl CoffeeMachine Kettle Plate Pan Toaster Pot Fridge
OPR 50k 0.826 0.800 0.803 0.798 0.770 0.760 0.751 0.743 0.737 0.728
OPR 30K 0.825 0.793 0.774 0.739 0.711 0.667 0.679 0.655 0.671 0.660
OPR 5k 0.820 0.792 0.759 0.758 0.680 0.677 0.677 0.661 0.655 0.650
OPR 2k 0.800 0.777 0.705 0.697 0.639 0.622 0.627 0.621 0.617 0.592
Baseline 0.823 0.458 0.309 0.263 0.230 0.172 0.243 0.196 0.181 0.117

EWC [13] 0.825 0.475 0.519 0.324 0.125 0.164 0.08 0.06 0.07 0.07
GDM [18] 0.930 0.218 0.206 0.185 0.175 0.094 0.083 0.051 0.037 0.007

This suggests that a larger memory capacity helps the network

better capture and utilize past experience. In contrast, we

observe relatively poor performance of the network when the

memory size is 2k. This suggests that a small memory capacity

limits the network’s effective use of past experience, leading

to a decrease in its performance in learning tasks. Unlike

the method in [14] where half of the experience is stored

in memory, the number of trajectories stored in our memory

is only a small fraction of the total number of trajectories.

Our approach effectively prevents forgetting and preserves the

ability to solve past tasks even with a smaller memory module.

D. Quantitative Analysis

In order to compare the performance of quantitative analyt-

ical methods and effectively capture the overall performance

during continual learning (including the impact of catastrophic

forgetting), we propose an evaluation metric called AS (av-

erage success),AS = 1
n

∑n
i Si, where n is the number of

currently learned navigation targets, and i is the success rate

of the i-th navigation target. The values in the figure represent

the test results of the agent on all learned targets after learning

the current navigation target. Based on the results, while the

average success rate of OPR decreases as the navigation target

increases, it still exhibits a favorable balance between plasticity

and stability when compared to other methods.

E. Comparison to EWC and GDM

We compared our method with EWC [13] and GDM(Global

Distribution Matching) [18]. We implemented and tested their

approaches on our task. Firstly, GDM is also a replay-based

Fig. 4. Compare the network performance of different memory sizes, and test
the performance of memory 50k, 30k, 5k and 3k respectively. We find that the
performance of the network further improves as the memory size increases.
Larger memories allow the network to better capture past experience, resulting
in more stable and reliable performance on long-term tasks.
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Fig. 5. The result of Global Distribution Matchingg g

Fig. 6. The result of EWC

method that uniformly stores experiences in memory during

training. This leads to a large number of suboptimal trajectory

samples being stored in memory, significantly affecting the

model’s plasticity. Additionally, as new navigation targets are

added to the memory, the proportion of excellent trajectories

in the already poor-quality memory decreases, resulting in

reduced model stability. On the other hand, EWC employs

regularization to penalize modifications to the gradients of

previously learned navigation targets. Since EWC is entirely

on-policy learning, it exhibits greater plasticity compared to

GDM. However, similar to GDM, EWC also suffers from a

phenomenon where failure to learn one target leads to poor

learning of the remaining targets. As both EWC and GDM

utilize previously learned knowledge, incorrect knowledge

accumulates and negatively impacts subsequent learning.

V. CONCLUSION

In this paper, we address the challenge of target-driven

visual navigation by introducing a new paradigm called target

incremental visual navigation. We propose a framework called

OPR (Optimal Policy Replay) to enable continuous learning of

navigation targets without relearning all targets. OPR utilizes

on-policy learning to learn the current navigation target and

off-policy learning to store the optimal policy for previously

learned targets in memory. Our experiments show that OPR

effectively mitigates catastrophic forgetting in visual naviga-

tion.
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