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Abstract—Grasp detection is an essential task for robots
to achieve autonomous operation, it can also make virtual
reality-based teleoperation more intelligent and reliable. Existing
learning-based grasp detection methods usually fail to strike a
balance between high accuracy and low time consumption. Also,
the large number of model parameters tends to make these
methods expensive to deploy. To solve this problem, a lightweight
generative grasp detection network DSC-GraspNet is proposed.
Firstly, Depth-separable convolutional blocks with Coordinate
Attention (CA) are stacked to obtain a lightweight backbone
network for feature extraction. Then multi-level features ex-
tracted by the backbone network are fused by the Cross Stage
Partial (CSP) block in the up-sampling network. Finally, pixel-
level grasp candidates are generated by grasp generating heads.
Experimental results shows that an accuracy of 98.3% under
image-wise splitting and 97.7% under object-wise splitting can be
achieved on the Cornell public dataset. Meanwhile, an accuracy
of 94.7% is achieved on the Jacquard dataset using the depth
map as inputs. Our method also achieve a grasp success rate
of 86.4% in the simulated grasp test. In addition, our network
is able to inference an RGB-D image within 14ms, and can be
applied to closed-loop grasping scenarios.

Index Terms—Robot, grasp detection, convolutional neural
network, depth-separable convolution.

I. INTRODUCTION

Grasp detection is a key technology for robot autonomous
operations, and it is also widely used in the field of robot
teleoperation based on virtual reality (VR) [1], [2]. Traditional
grasp detection methods [3], [4] rely too much on manually
designed features, which is tedious and time-consuming. With
the increase in computer performance, the performance of
deep learning methods on the problem of grasp detection
has improved greatly. These deep learning-based grasp detec-
tion methods can be broadly classified into three categories:
classification-based, regression-based methods and generation-
based methods. Classification-based methods [5]–[7] usually
use a sliding window to traverse the entire image to find the
optimal grasp candidate, which requires a lot of time and

*Xiaoqiang Zhang is the corresponding author.

computational resources. Regression-based methods [8]–[10]
directly regress the grasp pose by CNN, which performs well
in practical grasping. However, the regression-based methods
also suffers from the problems of large model size, long
inference time for a single image, and high network deploy-
ment cost. To overcome the above problems, generation-based
grasp detection methods based on CNN is proposed [11]–[13].
Different from previous methods, generation-based methods
generate pixel-wise grasp poses based on the global infor-
mation of the image, similar to image segmentation tasks.
Generation-based grasp detection method does not require
a large network to extract image features for grasp pose
prediction, so the amount of parameters is usually much
smaller than the previous two types of methods, and can
achieve high computational efficiency.

In this work, a generation-based Depth-Separable
Convolution-based grasp detection network (DSC-GraspNet)
that generates pixel-level grasp candidates is proposed. DSC-
GraspNet consists of three parts: the backbone network, the
up-sampling network, and the grasp generating head. In order
to reduce the size of the network, the DepthSepConv block in
MobileNet V1 [14] are introduced into the backbone network.
Subsequently, we add the Coordinate Attention (CA) [15]
to the DepthSepConv block to further improve the feature
extraction capability of the network. Moreover, by integrating
the Cross-Stage Partial (CSP) block with bottleneck layer,
the up-sampling network can fuse the multi-layer features
from the backbone network, which would improves the
feature utilization and ensures the speed of inference. The
contributions of this paper can be summarised in three folds:

• A lightweight generative grasp detection network archi-
tecture is proposed that predicts the optimal grasp config-
uration for objects in n-channel images. The network also
has high detection accuracy while keeping the number of
parameters low.

• A series of quantitative comparative experiments on pub-
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licly available datasets are conducted, and our network
achieving 98.3% and 94.7% accuracy on the Cornell and
Jacquard grasp datasets, respectively.

• Robot grasping experiments in a simulated environment
based our method are performed. The 7 DOF robot make
more than 150 grasping attempts on different unknown
objects, with a success rate of 86.4%.

II. RELATED WORK

In the field of robotics, the grasp detection has been a widely
and continuously studied problem. In the last decade, with the
improvement of computer performance, deep learning-based
method have also been developed and widely used in the
field of grasp detection, which can be classified into three
categories, namely, classification-based method, regression-
based method and generation-based method.

A. Classification-based method

Classification-based method use classifiers to select the
highest scoring grasps. For example, Lenz et al. [5] first
propose a grasp detection network trained by sparse self-
encoders using sliding windows, finally the network achieve
a detection accuracy of 75.6% and an inference time of
1350 ms on the Cornell dataset. Wang et al. [6] propose
a convolutional neural network-based classification network
to identify candidate grasping regions. Pinto et al. [7] use a
CNN network to predict the grasp position and angle of image
sample patch with better generalization capability in the face
of unknown objects. These classification-based methods show
relatively high accuracy in grasp detection, but still fall short
of fast inference and low computational consumption.

B. Regression-based method

Regression-based methods use CNN to directly regress the
grasping position and angle. In early works, Redmon et al. [8]
propose a large network based on a single-stage regression
approach to predict grasps. Kumra et al. [9] design a CNN
using ResNet [16] as the feature extractor to predict grasps
in multi-modal data inputs, while they achieve an accuracy
of 89.2% and an inference time of 103 ms on the Cornell
dataset. To improve the feature representation, Zhang et al.
[10] construct a multi-modal fusion architecture using dilated
convolution and a novel loss function. These regression-based
methods perform well in grasp detection, but suffer from the
drawbacks of large network size and long inference time.

C. Generation-based method

Unlike the previous two types of methods, the generation-
based methods generates pixel-level grasp candidates directly.
Inspired by the fully convolutional network FCN [17], GG-
CNN algorithm is proposed by Morrison et al. [11], which
uses the pixel-level labeled grasp map to complete the grasp
detection task. As the first generation-based grasp detection
method, GG-CNN achieved the grasp detection accuracy of
73.0% and the fastest inference speed of 19 ms on the Cornell
dataset. Wang et al. [18] improve GG-CNN and further use

the global and local features of the image to improve the grasp
detection accuracy. Kumra et al. [12] propose GR-ConvNet,
which introduce multiple residual structures to obtain higher
accuracy. Multi-task learning is introduced into the grasp
detection network by Prew et al. [13]. Wang et al. [19] present
a new transformer-based architecture TF-Grasp for robotic
grasp detection, which obtain a state-of-the-art performance
in public datasets.

III. METHOD

In this section, the proposed method will be described in
detail. The grasp representation we used is introduced in
subsection III-A. In subsection III-B to III-E, each key part
of the grasp detection network are presented in detail. The
loss function used to optimize the network during the training
process is described in subsection III-F.

A. Grasp representation

Consistent with previous work [12], [13], [19], an improved
version of grasp representation proposed by Morrison et al.
[11] is used in this paper:

Gi = (x, y,Θi,Wi, Q), (1)

where (x, y) represents the center point of grasp in image
frame, Θi the orientation in the camera frame, Wi the required
width in image frame, and Q the grasp quality score. The
above grasp is defined in the 2D image frame, and we need
to convert it to the robot reference system, this process that
can be described as:

Gr = Trc(Tci(Gi)), (2)

where Trc and Tci are the transform matrix of the camera
frame to the robot frame and 2D image frame to the camera
frame, respectively. This notation can be scaled for multiple
grasps in an image. The set of all the grasps can be denoted
as:

G = (Θ,W,Q) ∈ R3×h×w, (3)

where Θ,W, and Q represents three images in the form of
grasp angle, grasp width and grasp quality score calculated at
every pixel of an image using Eq. (1), respectively. Finally, the
center point's position can be calculated by searching for the
pixel value of the maximum grasp quality: g̊ = maxQ(G).

B. Network architecture

Inspired by GG-CNN [11], a Depth-Separable Convolution-
based generative grasping detection network DSC-GraspNet is
proposed. Different from GG-CNN, n-channel data is used as
network input to obtain richer feature expressions. In addition,
the feature extraction network and upsampling network have
also been improved. Fig. 1 demonstrates the network archi-
tecture. The network takes n-channel images as input, and the
end-to-end output contains a grasping set G of grasp quality,
grasp angle and grasp width. DSC-GraspNet is divided into
three parts: the backbone network, the up-sampling network
and the grasp generating head. We use the backbone network
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Fig. 1. DSC-GraspNet Architecture. The backbone network is staked by the improved DepthSepConv blocks, which takes the n-channel image I as the input,
and outputs C1− C4 feature maps to the up-sampling network. The Up-sampling Network take the input from the C1− C4 feature maps and outputs one
feature map P to the grasp generating head. The head finally generate the grasp pose of each pixel (the grasp map G) by four heads, including the grasp
quality Q, grasp width W, and grasp angle Θ. Finally, the optimal grasp pose can be calculated by g̊i = maxQ(G).

to extract multi-level semantic information of the input image
and obtain feature maps, which will be sent to the up-sampling
network. The up-sampling network will fuse and upsample
these feature maps and restore the size of the feature maps to
the same size as the input image. Finally, the grasp quality Q,
grasp angle Θ and the opening width of the gripper W are
obtained by the grasp generating heads.

C. Backbone network

Most of the current generative grasp detection networks
use fully convolutional neural network architectures, which
use a conventional convolutional layer superposition structure
when performing feature extraction. For example, the GG-
CNN network uses basic convolution and maximum pooling
to form the feature extraction network, and upsamples the
feature map by deconvolution to finally generate the grasp
map. While deepening the depth of the convolutional neural
network or widening the width of the network would improve
the data fitting ability and the prediction accuracy of the
network, the increase of the amount of parameters would result
in an increase of inference time and deployment cost, which
restrict the real-time application in grasp detection networks.
To address this problem, we propose a light-weight backbone
network for feature extraction based on depth-separable con-
volution and coordinate attention is utilized in the proposed
network.

1) Depth Separable Convolution Block: the depth-separable
convolution was first consists of two processes: depth-wise
convolution (DWConv) and point-wise convolution (PW-
Conv). The number of parameters in depth-separable convo-
lution is about one-third of that in traditional convolution, so
the number of layers of the network can be deeper when we
stack them using depth-separable convolution with the same
amount of network parameters. We use the DepthSepConv

TABLE I
THE DETAILS OF THE BACKBONE NETWORK

Operator Size Stride Input Output CA
Stem / Conv2d 3× 3 1 2242 × 4 2242 × 32 −
DepthSepConv 3× 3 1 2242 × 32 2242 × 32

√

DepthSepConv 3× 3 2 2242 × 32 1122 × 64
√

DepthSepConv 3× 3 1 1122 × 64 1122 × 64
√

DepthSepConv 3× 3 2 1122 × 64 562 × 128
√

DepthSepConv 3× 3 1 562 × 128 562 × 128
√

DepthSepConv 3× 3 2 562 × 128 282 × 256
√

5×DepthSepConv 5× 5 1 282 × 256 282 × 256
√

mentioned by MobileNetV1 [14] as basic block, and the
structure of DepthSepConv is given in Fig 1. Given the input
features, i.e., Fin ∈ RC×H×W , we first extract the feature
by DWConv, and then activate it using Batch Normalization
and Mish function to obtain the feature FDCBM ∈ RC×H×W ,
followed by convolution of FDCBM using PWConv, in which
we also use the batch normalization and mish function. During
experiments, we find that using the Mish function makes the
training process more stable. In addition, we also use the
attention module after the PWConv layer and get the output
feature FDSC for DepthSepConv block. We can formulate the
above procedure as Eq. (4):

FDCBM = Mish (BN (DWConv (Fin))) ,

FPCBM = Mish (BN (PWConv (FDCBM ))) ,

FDSC = Attention (FPCBM ) .

(4)

Different size of convolution kernels are utilized for the
backbone network, and the specific structure of backbone is
shown in Table. I.

2) Coordinate Attention: Most existing attention to channel
operations use maximum pooling or average pooling, which
may lead to loss of spatial information of the target. Therefore,
we adopt a new Coordinate Attention (CA) mechanism [15],
as shown in Fig. 2. Unlike channel attention that converts
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the feature tensor into a single feature vector through 2D
global pooling, the CA decomposes channel attention into
two 1D feature encoding processes that aggregate features
along 2 spatial directions, respectively. In this way, remote
dependencies can be captured along one spatial direction,
while accurate location information can be retained along the
other spatial direction. The generated feature maps are then
encoded as a pair of direction-aware and location-sensitive
feature vectors, respectively, which can be complementarily
applied to the input feature maps by tensor multiplication to
weaken redundant features while enhancing the features of
interest.

Fig. 2. Schematic of the Coordinate Attention (CA) block [15]. ’X Avg Pool’
and ’Y Avg Pool’ refer to 1D horizontal global pooling and 1D vertical global
pooling, respectively. And the scaling factor r of CA block we set to 32.

D. CSP block based up-sampling network

Different from the backbone network, the up-sampling
network focuses more on how to improve the efficiency of
feature utilization while ensuring low computational effort.
We use the CSP structure in the cross-stage partial network
(CSPNet) [20] in each stage of the up-sampling network, and
further extract features through the bottleneck in the CSP
structure to improve the detection accuracy without affect-
ing the network operation speed, thus solving the problem
of imbalance between accuracy and inference speed. More
specifically, our up-sampling network is divided into 3 up-
sampling stages, each stage consists of a CSP block and a
bilinear up-sampling layer. Through 3 stages of up-sampling,
we recover the size of the feature map to the size of the original
input image. To improve the feature utilization, we use the skip
connection structure. We first upsample the output features of
the CSP block by bilinear interpolation to obtain the Fup, and
then concatenate the Fup and the feature ci corresponding to
the output of the backbone network in channel dimension. This
process can be expressed as Eq. (5):

Fup (x) = Upsample (x) ,

Fcsp (x1, x2) = Mish (CSP (Concat (x1, Fup (x2)))) .
(5)

A total of three up-sampling stages to recover the size of
the feature map was used, and finally we obtain the feature
F with the same size as the input image, and the process of
up-sampling network can be expressed by Eq. (6):

P = F 2
csp

(
C1, F

1
csp

(
C2, F

0
csp (C3, C4)

))
. (6)

As shown in Fig. 3 (a), the CSP block inputs the original
feature map into two branches. The Path1 branch is composed
of convolution, BathNormal and Mish activation function
(CBM) in series, and the number of output channels is reduced
by half through convolution. The Path2 branch also reduces
the number of channels through CBM, and then feeds the
features into N bottleneck blocks. Finally, the output of the
two branches is concatenated in channel-wise, and then a
convolution is performed again through a CBM block. In
this way, when the model weight is updated, the combination
of gradients is more diverse and the learning ability of the
network is improved. At the same time, CSP blocks can also
alleviate gradient information redundancy, reduce computing
bottlenecks, and reduce memory cost. The structure of the
bottleneck is shown in Fig. 3 (b). The first CBM block uses
1 × 1 convolution to adjust the number of feature channels,
and then recovers the channels through 3 × 3 convolution.
In addition, we also increase the gradient value of back
propagation between layers by adding residual connection,
further avoiding the problem of gradient disappearance, so that
the network can learn more refined features.

E. Grasp generating head

The grasp generating head consists of 4 task-specific con-
volutional layers with a kernel size of 3 × 3: the Quality
Head, the Cos2θ Head, the Sin2θ Head, and the Width Head.
Experiments show that the network has the potential to overfit
during training, so we add a dropout layer for regularization
after each header output, which facilitates the network to learn
rare but useful features. We use a Gaussian kernel to filter the
grasp quality images, which can make the grasp results more
robust by removing the extreme values close to the regions
with poor grasp quality. The final grasp position (x, y) is the
position with the max grasp quality in the quality map. Based
on the same position, the angle Θ and the width W can be
got in the other images. The rotation angle of the gripper
along the normal of the grasp plane can be calculated by
θ = 1

2 arctan sin 2θ
cos 2θ .

Fig. 3. The CSP Block and bottleneck used by the up-sampling network. (a)
The framwork of CSP Block. (b) The bottleneck module. The input features
are divided into two parts and sent to Path1 and Path2. Each path adjusts the
number of channels through 2d convolution. In Path2, N bottleneck modules
are stacked in series, and the feature maps of the two paths are concatenated
and feed into the trasition layer.
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F. Loss function

The generative grasp detection task is a typical regression
task. The Huber function is utilized as the loss function of
DSC-GraspNet. The Huber function has the advantages of
MSE and MAE function, which is more stable for outliers
and has strong robustness in the training process. If direct use
Huber function to calculate the regression loss of grasp angle
or width images, the network would tend to learn grasp angle
or width values close to 0 in non-grasping regions, even if no
grasping is attempted in these regions. To avoid this problem,
a new position-enhanced loss function P-Huber was proposed.
The P-Huber loss function is defined as:

Lp = L (Qe)+L
(
Q̂i · Φcos

e

)
+L

(
Q̂i · Φsin

e

)
+L

(
Q̂i ·We

)
,

(7)
where L is the Huber function, Qe,Φcos

e ,Φsin
e and We the error

of quality, Cos2θ, Sin2θ and width of grasp, respectively, and
Q̂i the Ground Truth grasp quality. The network will more
focused on the learning of grasp angle and grasp width at
potential grasp region by multiplying error directly with Q̂i.

IV. EXPERIMENTAL RESULTS

In this section, experimental results would be presented to
demonstrate the effectiveness of our method. Firstly, grasp
datasets and metrics are introduced. Then, quantitative perfor-
mance comparison experiments are carried out in detail on two
public grasp datasets. Finally, the performance of our method
in robot grasping is verified by simulation experiments.

A. Datasets and metrics

1) Datasets: The Cornell dataset [21] and the Jacquard
dataset [22] are used to validate the effectiveness of the
proposed method, which contain both RGB and depth images.
The Cornell dataset consists of 885 RGB-D images of 240
different objects. The dataset is manually labeled with 5110
positive and 2090 negative grasps, and is the most widely used
benchmark in the field of robotic grasp detection. The Jacqurad
dataset is a large grasping dataset created by simulation based
on the CAD model of objects, containing 50k RGB-D images
of 11k objects and over 1M grasp labels.

2) Metrics: To ensure the fairness of the comparison, we
adopt the metric [21] proposed by Jiang et al. . This metric
states that a candidate grasp is considered correct if it satisfies
both of the following conditions:

• Angle difference: The difference in orientation Angle
between the generated grasp and the grasping label is
less than 30◦ .

• Jaccard index: The Jaccard index of the generated grasp
and the corresponding ground truth is greater than 25%,
which can be formulated as:

J(gp, gl) =
|gp ∩ gl|
|gp ∪ gl|

, (8)

where gp and gl denote the generated grasp rectangle and
the ground truth grasp label, respectively. gp ∩ gl represents
the intersection of predicted grasp and the ground truth grasp

Fig. 4. Comparison studies on the Cornell dataset. The first three rows are
the maps of grasp width, angle and the quality generated by two networks.
And, the last row is the visualization of the optimal grasp for each objects.

label. And the union of predicted grasp and the corresponding
ground truth is represented as gp ∪ gl.

3) Data preprocessing: Due to the relatively small amount
of data in the Cornell dataset, we performed data augmentation
during the training process. Specifically, we first crop the
image based on the center of the original image, and rotate
the cropped image randomly, the cropped image is randomly
rotated ±π2 or ±π. After the rotation, the image is randomly
reserved around the center by 50% to 100%, and then resized
to the original size. At the same time, the grasp labels are
processed accordingly. As Jacquard dataset is large enough to
train the network, no data augmentation is performed.

4) Training Methodology: In the training and testing pe-
riod, the network is given an input image of size 224×224.
The hardware system consists of an AMD Ryzen7-5800H
CPU @3.20GHz × 8 processors, and an NVIDIA GeForce
RTX 3070 Laptop GPU with 8GB memory. The training and
inference framework are built based on Pytorch 1.8.2 with
cuda-11.0.5 and cudnn-8.0.5 pacakges. The newly proposed
Ranger optimizer [23] is adopted to train the model. In
addition, we fixed the learning rate 0.001 during training, and
the batch size is 32 and the epoch number is 50.

B. Experiments on the Cornell dataset

Following the previous works [5], [8], [9], [24], [25], the
Cornell dataset can be divided into two different ways to
validate the generalization ability of the method, namely,

• Image-wise level: the images of dataset are randomly
divided by shuffling. This method is used to evaluate
the generalization ability of the network on orientation
change and size variation of objects.

• Object-wise level: the object instances of dataset are
randomly divided. This method is used to evaluate the
generalization ability of the network for new object.

The comparison of the accuracy of our DSC-GraspNet with
other methods for grasp detection on the Cornell dataset is
reported in Table. II. Experimental results show that our DSC-
GraspNet achieves high accuracy of 98.3% and 97.7% in IW
and OW split with the lowest inference time: 14ms. Not only

230
Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on May 08,2024 at 11:45:20 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE CORNELL DATASET

Method Accuracy (%) Speed Parameters
IW OW (ms) (million)

SAE [5] 73.9 75.6 1350 -
AlexNet, MultiGrasp [8] 88.0 87.1 76 -

Two-stage closed-loop [6] 85.3 - 140 -
ResNet-50x2 [9] 89.2 88.9 103 -
GG-CNN [11] 73.0 69.0 19 0.066

Multi grasp, ResNet-50 [26] 96.0 96.1 120 216
FCGN, ResNet-101 [27] 97.7 96.6 117 -

GRPN [28] 88.7 - 200 -
STEM-CaRFs [29] 88.2 87.5 - -
GR-ConvNet [12] 97.7 96.6 20 1.9

TF-Grasp [19] 97.9 96.7 41.6 5.8
Ours DSC-GraspNet-D 96.0 96.6 11

Ours DSC-GraspNet-RGB 97.7 98.3 13 0.643
Ours DSC-GraspNet-RGB-D 98.3 97.7 14

TABLE III
QUANTITATIVE COMPARISON RESULTS ON THE JACQUARD DATASET

Method Accuracy (%)
Jacquard [22] 74.2
GG-CNN [11] 84

FCGN, ResNet-101 [27] 91.8
GR-ConvNet [12] 94.6

TF-Grasp [19] 94.6
Ours DSC-GraspNet-RGB-D 93.8

Ours DSC-GraspNet-D 94.7
Ours DSC-GraspNet-RGB 91.8

do we achieve the highest accuracy with RGB-D data input,
but our accuracy remains impressive with single RGB or Depth
image data input. The parameter amount of our model is
about 0.643 million, which is much smaller than most other
algorithms, and we have a faster inference speed.

Some results of the grasp detection on the Cornell dataset
are visualized in Fig. 4. Note that these images are all new
objects that have not appeared in the training set. We use the
current state-of-the-art GR-ConvNet [12] as a comparison, and
for a fair comparison, we use its officially provided code to
train and test on the same dataset. Only the grasp with the
highest grasp quality is selected, and the optimal grasp is
visualised through blue rectangular box in the last row. It can
be seen from the figure that our DSC-GraspNet can generate
reliable grasps for unseen objects with different shapes and
poses.
C. Experiments on the Jacquard dataset

To further evaluate the performance of the proposed method,
experiments will also be conducted on the Jacquard dataset.
We follow the setup of existing work and train DSC-GraspNet
on 90% of the dataset and validate it on 10% of the remaining
dataset. Similar to that of the Cornell dataset, we conducted
experiments using multiple input data patterns, and the relevant
results are reported in Table. III. Using depth data as input, our
DSC-GraspNet achieves performance with 94.7% detection
accuracy, outperforming existing methods. We compare DSC-
GraspNet with GR-ConvNet on the Jacquard dataset, and the
relevant comparison results are visualized in Fig. 5.

D. Ablation study

To further explore the effect of different components on the
learning of grasp poses, we trained our models with different

Fig. 5. Comparison studies on the Jacquard dataset. The first three rows are
the maps of grasp width, angle and the quality generated by two networks.
And, the last row is the visualization of the optimal grasp for each objects.

TABLE IV
DIFFERENT CONFIGURATIONS OF ABLATION EXPERIMENTS IN

DSC-GRASPNET

Baseline X X X X
+ CA X X X
+ CSP X X X

+ P-Huber X X X
Acurracy (%) 93.3% 93.5% 94.3% 94.7%

network settings on the Jacquard dataset with depth images as
inputs. The experimental results are summarized in Table. IV.
We will include only the backbone and a network consisting
of basic convolution and up-sampling layers as the baseline.
From the detection accuracy in the Table. IV, we can see that
adding CA, CSP and P-Huber loss functions can improve the
performance of the network, and in addition we can achieve
the best detection accuracy by combining all components
together.

E. Failure cases analysis

During the evaluation experiments conducted, there were
some cases of failed detection, and some failure cases are
shown in Fig. 6. For some objects with complex textures in
the Cornell dataset our model does not detect them very well.
In addition, the detection quality of some objects with similar
color and flatter background in the Jacquard dataset is also
poor. These shortcomings can be solved by increasing the
diversity of the dataset.

F. Experimental results of simulated grasping

To evaluate antipodal robotic grasping in simulation, we
developed a simulation environment in PyBullet [30], where
a 7 DOF Panda arm from Franka Emika with a parallel-jaw
gripper. An build-in RGB-D visual camera is used to observe
the robot’s workspace and sense the environment. The objects

Fig. 6. Some failed detection cases: left two results from Jacquard dataset
and right two from Cornell dataset, objects are all unseen in training set.

231
Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on May 08,2024 at 11:45:20 UTC from IEEE Xplore.  Restrictions apply. 



to be grasped in the experiments are all from the YCB object
set. At the beginning of each grasping experiment, the robot
will be set to a predetermined pose, with randomly selected
objects placed in any position in the robot’s workspace. In the
experimental process, we predict the optimal grasping pose
through the network and send it to the controller of the robot.
After the robot moves to the grasping position, it closes the
gripper and picks up the object, if the object does not fall,
the grasp is considered as successful. For the same object
we performed 20 randomized grasping experiments for more
than 150 grasping attempts. Our DSC-GraspNet achieves a
success rate of 86.4%, while the comparison algorithm GR-
ConvNet [12] only achieves a success rate of 77.5%.

V. CONCLUSION

In this paper, a lightweight generative grasp detection net-
work was proposed, which uses n-channel of input images to
generate pixel-level grasp predictions. Quantitative evaluation
experiments on the Cornell and Jacquard dataset demonstrate
the effectiveness of our method. In addition, the result of
simulation grasp experiments show that our method has better
performance in terms of accuracy and robustness. Moreover,
the low inference time of our model enables its application to
closed-loop robotic grasping.
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