
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2023 1

Progressive Modality-Alignment for Unsupervised
Heterogeneous Change Detection

Yinghui Xing, Member, IEEE, Qi Zhang, Lingyan Ran, Xiuwei Zhang, Hanlin Yin, Yanning
Zhang, Senior Member, IEEE

Abstract—Change detection based on heterogeneous images
is of great importance in some applications, such as disaster
monitoring and damage assessment. However, due to the huge
modality discrepancy in heterogeneous images, it is difficult to
accurately detect the changed regions. In this paper, we analyze
the interference of modality-alignment and changed areas to
each other, and propose a progressive modality-alignment based
unsupervised change detection model for heterogeneous images.
Specifically, the modality alignment is achieved in an iterative
manner, which can improve the detection accuracy progressively.
To reduce the influence of modality discrepancy and the changed
regions to each other, a pseudo-label self-learning strategy is
designed, where the pseudo-labels learned by the model itself are
used to act as a guidance of change detection, and they are in turn
refined by the proposed progressive model. Experimental results
on different real heterogeneous images verify the effectiveness
and robustness of proposed method.

Index Terms—Heterogeneous images, change detection, auto-
encoder, pseudo-label, progressive.

I. INTRODUCTION

CHANGE detection refers to identifying changes by an-
alyzing images acquired over the same geographical

location but at different times [1]. It has been widely used
in damage assessment [2], [3], land-cover monitoring [4] and
environmental investigation [5].

With the development of remote sensing technology, plenty
of remote sensing data have been available for earth obser-
vation, which boosts the progress of change detection. These
remote sensing data can be obtained from various types of
sensors [6], such as optical, Synthetic Aperture Radar (SAR),
and Light Detection and Ranging (LiDAR) etc. In general,
detecting changes between images from different types of
sensors (heterogeneous) is more difficult than that from the
same sensor (homogeneous), because heterogeneous change
detection should consider not only the spatial interference
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factors, like noise, weather and illumination, but also the
modality discrepancy. In some time-bounded scenarios, such
as fast response for disaster management, one can not obtain
images from the same sensor [7], thus heterogeneous change
detection attracts more attention in recent years. However, in
heterogeneous case, the bi-temporal images to be compared
exhibit large intensity and geometric differences, making the
traditional direct comparison infeasible [8]. Therefore, some
specific designs should be taken into consideration to realize
the change detection of heterogeneous images.

Due to the huge modality discrepancy, some methods firstly
classify multi-temporal images and then detect changes based
on the classification results [9]–[11]. They circumvent the
modality alignment operation and are easy to be implemented,
but the detection results heavily depend on the performance
of classifiers.

Another straightforward manner is to distinguish the
changed and unchanged regions [12] by extracting modality-
invariant features [13], [14]. Nevertheless, it is nontrivial to
extract modality-invariant features since the image contents
are strongly affected by the imaging conditions, which brings
difficulties in decoupling of modality-dependent and modality-
independent features, especially for SAR images with speckle
noise.

Considering the semantic similarity between bi-temporal
images, some other heterogeneous CD methods eliminate the
modality differences first and then calculate the change map.
They either transform the image from one domain to the
other [13], [15]–[17], or take bi-temporal images into a com-
mon latent feature space to align them [18]–[20]. The former
tries to align heterogeneous images in the image domain, and
then utilizes homogeneous change detection models to obtain
change maps [13], [15]–[17]. But the imaging mechanism
of sensors are quite different, transforming one image to
the other domain inevitably introduce some noises, leading
to suboptimal results. The latter assumes that bi-temporal
images can be transformed into a common latent space learned
from unchanged regions. In order to obtain such a feature
space, a plenty of training samples are required to guide the
training process. However, the data annotation is inherently
cumbersome, especially for heterogeneous images. Hence,
unsupervised models have been developed and become popular
in heterogeneous image change detection [13], [16], [21], [22].

In general, unsupervised heterogeneous images change de-
tection faces two main challenges: heterogeneity and label-
scarcity. Since the differences between the pre-event and post-
event images come from not only the changed regions, but
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Fig. 1. Confusion map of (a) initialization, (b) first iteration and (c) last
iteration of our method.

also modality discrepancy, the models should distinguish real
changed regions from the spatial interferences on the condition
of label-scarity and huge modality difference.

For the unavailability of labels, most of current unsupervised
methods iteratively update the pseudo-labels to detect changed
regions, therefore, it is crucial to obtain high-quality initial
change maps to facilitate the selection of pseudo-labels. Some
of them generate the initial change map through random ini-
tialization [18], [23], [24], failing to provide a proper guidance
for feature alignment. Zhang et al. [25] used OBCD [26], a
method for homogeneous CD task, to obtain the initial change
map. Li et al. [27] utilized an extra three-layer network to
obtain the initial change information. The selection of pseudo
labels strongly depends on the quality of initial change map,
while their initialization disregarded the modality discrepancy,
thus limiting their performance.

In this paper, we propose a progressive modality-alignment
method, which aligns heterogeneous image features and refines
pseudo-labels alternatively. Our model reduces the interference
of changed regions to modality alignment and also diminishes
the impact of modality alignment to change detection result.
Specifically, we use the model itself to generate pseudo-labels
without introducing additional parameters. Then, a pseudo-
label self-learning strategy is designed to guide the training
process and at the same time further refine the pseudo-labels
themselves. Finally, the pseudo-label generation and pseudo-
label self-learning are achieved in a progressive manner. Since
the model has the ability of producing pseudo-labels and then
updating them, we can take the results of the last iteration as
the final change map without any post-processing. As can be
seen in Fig. 1, the change maps are effectively refined through
our model.

The main contributions of this paper are summarized as
follows:

1) We propose a progressive refinement framework for
unsupervised heterogeneous change detection, where the
subtle changed details can be detected in an alternatively
progressive manner.

2) A pseudo-label self-learning strategy is designed. The
pseudo-labels generated during the modality-alignment
process are used to guide the detection of changed
regions, and the detection results also refine the pseudo-
labels in turn.

3) We comprehensively compared our model with several
state-of-the-art unsupervised heterogeneous change de-
tection methods, including FPMS [28], NACCL [29],
INLPG [30], IRG-Mcs [12], SCCN [18], cGAN [31]

and CAAE [16]. Our proposed one was verified to be
effective and advanced in experiments by achieving a
higher overall accuracy (OA), Area Under the ROC
Curve (AUC), and Kappa coefficient than these coun-
terparts.

The rest of the paper is organized as follows. Section II
provides related works. Section III introduces our proposed
method in detail. Experimental results and corresponding
analysis are demonstrated in Section IV. Section V concludes
this paper.

II. RELATED WORKS

Over the last two decades, many change detection (CD)
methods have been proposed. In this section, we first briefly
review the unsupervised change detection methods, and then
introduce the related heterogeneous change detection models.

A. Unsupervised Change Detection

There are a number of supervised CD methods [32]–[34],
which rely on a large amount of labeled data. However,
due to the fact that the annotation of labels is cumbersome,
unsupervised change detection methods are promising.

Bruzzone et al. [35] has summarized that unsupervised
change detection mainly comprises difference image (DI)
generation and change analysis. Following this paradigm,
Celik et al. [36] used PCA to map local neighborhoods in
differential images to high-dimensional space defined using
non-overlapping image blocks. Then the K-means algorithm
is used to automatically separate the changed regions from
the whole regions. Hao et al. [37] proposed an unsupervised
CD method based on the level set method of expectation
maximization. Li et al. [38] combined the fuzzy C-means
algorithm with the nearest neighbor rule to classify Gabor
features extracted from SAR images. Above methods all
use traditional feature extraction manners and the detection
accuracy is not always satisfying. Saha et al. [39] extracted
bitemporal features using an untrained model and further
compared the features using deep change vector analysis to
distinguish changed pixels. Bergamasco et al. [40] proposed
a convolutional autoencoder (CAE) [41] to detect changes in
SAR images. By using a feature selection method based on
variance, this strategy selects the features with the most change
information to generate the difference map.

B. Heterogeneous Change Detection

Owing to the large modality discrepancy, the annotation of
changed regions in heterogeneous images is difficult. There-
fore, most of heterogeneous CD methods are unsupervised.

Some heterogeneous CD methods are based on image sta-
tistical characteristics, and utilize the image regression model
to detect changes [13], [15], [42]. Mercier et al. [42] modeled
the dependence of data statistics of bi-temporal images using
quantile regression. It yielded an estimation of the local
statistics, which were compared with that of the groundtruth
by KL divergence. HPT [15] is a kernel regression method. It
selected the K-nearest neighbors of target pixels from a small
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Fig. 2. Overall framework, where P(i), M(i), and D(i) are the pseudo-
labels, mask, and the difference map in i-th iteration, respectively. PSN and
PRN are the abbreviations of Pseudo Siamese Network and the Pseudo-label
Refinement Network.

number of unchanged samples to obtain the predicted value of
target pixels through weighted addition. Luppino et al. [13]
proposed an unsupervised method based on affinity matrix and
image regression. The method identified the pixels that may be
invariant by the similarity of affinity matrix, then used them to
learn the mapping relationship between bi-temporal images.

There are some methods that based on the similarity met-
ric [12], [18], [24], [30], [43], [44]. SCCN [18] is a coupled
symmetric network, who used two stack DAEs [43] to extract
features and constrained them to the same space. Yang et
al. [24] utilized a method similar to SCCN [18], but they
integrated multi-scale strategy into feature extraction model
to obtain more accurate detection results. NPSG [44], and
its modified versions [12], [30] constructed a graph based on
the nonlocal patch similarity, and then defined the degree of
change by measuring the consistency of the graph structure.

Benefiting from the development of generative adversarial
networks (GANs), some researchers detect changes on the
basis of image translation or style transfer methods. To the
best of our knowledge, cGAN [31] is the first attempt. The
authors used conditional GAN [45] model to transform an
image to another style, and then utilized an approximation
network to narrow the gap of image domains. Liu et al.
[46] realized the image translation through cycleGAN [47],
and selected the partially changed and unchanged pixels to
form the training set to train a random forest classifier. While
Jiang et al. [48] directly used VGGNet to extract image
features, and computed Gram matrix to represent image style.
Achieving change detection by retaining content information
and transforming style information in the hidden space.

Similar to our proposed one, Zhan et al. [49] designed
an iterative method to map heterogeneous images to the
same space, where the direct comparison can be conducted.
However, the same structure is used to generate and reuse
the change map, and such a framework depends heavily on
the results of the first mapping. Our method adds a pseudo-
label self-learning strategy to alternately detect changes and
refine pseudo-labels, which makes up for the defects of Zhan’s
method [49].

III. METHODOLOGY

In this section, we first formulate the heterogeneous change
detection task, and then provide an overview of our proposed

Fig. 3. Details of the n-th iteration, where the red and black arrows indicate
the pseudo-label generation process and the pseudo-label self-learning process,
respectively, and the blue arrows denote the mask generation and transfer to
the (n+ 1)-th iteration.

approach, followed by a detailed introduction of pseudo-
label generation, pseudo-label self-learning and progressive
refinement. The framework is shown in Fig. 2.

A. Problem Formulation

Change detection task takes two coregistered images X ∈
Rm×n×b and Y ∈ Rm×n×b as inputs to generate a change
map C ∈ Rm×n. C is a binary matrix, whose elements
indicate the changed areas. In heterogeneous change detection
task, the Pre-event image X and the Post-event image Y
come from different type of sensors. Owing to the modality
discrepancy, some recent models first map two images into
the same hidden space Z , and then obtain the change map by
some change analysis methods A(·, ·).

C = A(ZX ,ZY ), (1)

where ZX and ZY are the mapped features of X and Y in
the same hidden space Z .

B. Overview

On the whole, our model is built upon an alternative
optimization framework. It contains a warm-up training stage
and a progressive training stage. The aim of warm-up training
is to obtain a prior change map P(0) to guide the progressive
training. In the warm-up training, the Pseudo Siamese Network
(PSN) takes bi-temporal images as inputs to extract features
in a common space, which is trained a few epochs with a
warm-up loss Lwarm. The progressive training stage consists
of a pseudo-label generation process and a pseudo-label self-
learning process, which are learned alternatively. Taking the
n-th iteration as an example, as illustrated in Fig. 3, in the
pseudo-label generation process, we first generate the mask
M(n) from P(n−1), and then calculate the masked loss term
Lpull to align the features extracted by PSN. Combined
with the reconstruction loss term, PSN is trained to extract
aligned and informative features. To refine the pseudo-labels,

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3294300

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 12,2023 at 07:39:11 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2023 4

we obtain the pseudo-label map D
(n)
p from the difference

map D(n) produced by PSN. Then the predictions of current
iteration are obtained through the Pseudo-label Refinement
Network (PRN). The pseudo-label map and the predictions
are used to train PRN. Because the calculation of both pseudo-
labels and the predictions are achieved by the model itself, we
call this process as pseudo-label self-learning process. Finally,
the predictions of n-th iteration are used to generate the
mask M(n+1) for the next iteration. After several alternative
iterations, we take the predictions of the last iteration as our
final detection results.

Note that although the training of our model is composed
of two stages, the inference is achieved directly through the
cascade of PSN and PRN.

C. Warm-Up Training Stage

Since our model detect changed regions in a progressive
manner, an initial change map should be taken as starting
point. The simplest method is to utilize the random initializa-
tion or the identity initialization. However, we have conducted
thorough experiments and found that such initializations would
result in unstable performance on different datasets. Actually,
a rough change map produced by available change detection
methods can be treated as initial change map to guide the
progressive training. Therefore, in our paper, we use the
Pseudo Siamese Network (PSN) itself, whose branches have
the same structure but different parameters, to extract image
features. The extracted features are represented by

ZX = Fe(X),

ZY = Ge(Y),
(2)

where Fe(·) and Ge(·) denote the encoders of the Pre-event
and Post-event images, and they can transform the heteroge-
nous images to the same latent space Z .

The warm-up loss Lwarm is then defined as:

Lwarm =
1

mn

∑
i,j

∥ZX(i, j)− ZY (i, j)∥1, (3)

where m and n denote the height and width of image feature.
After warm-up training, the initial convergence of the model
produces relatively reliable predictions, which can be used
as priors to further improve change detection. We then use
the classical threshold method OTSU [50] to obtain an initial
change map P(0) by P(0) = OTSU(D(0)), where D(0)

denotes the difference map in warm up training. Experimental
results show that such a warm-up training not only helps
to obtain an initial change map, but also enables the stable
training of our model.

D. Progressive Training Stage

The progressive training stage contains a pseudo-label gen-
eration process and a pseudo-label self-learning process.

1) Pseudo-Label Generation: Because heterogeneous im-
ages have huge distribution difference e.g. optical and SAR
images, we should align heterogeneous image features to well
locate the changed regions. In general, we can minimize their
difference in feature space. However, the differences come
from not only the modality discrepancy, but also the changed
regions. Therefore, we use a masked loss term defined as
follows to reduce the interference of changed pixels to the
alignment:

Lpull =
1

mn

∑
i,j

M(n)(i, j)∥ZX(i, j)− ZY (i, j)∥1, (4)

where M(n) = 1−P(n−1) is the calculated mask for the n-th
iteration, which is also detailed later. Ideally, M(n)(i, j) = 1
if the position (i, j) belongs to unchanged regions, and vice
verse. Such an mask enables the encoders to learn mapping
function without the interference of changed regions.

At the same time, in order to make the encoders learn the
most informative features, we also use a reconstruction loss
term Lrec for two encoders with the assistance of a pair of
decoders,

Lrec = ∥X− Fd(ZX)∥1 + ∥Y −Gd(ZY )∥1, (5)

where Fd(·) and Gd(·) are the decoders corresponding to
encoders Fe(·) and Ge(·).

The loss function for PSN is

LPSN = Lpull + λLrec, (6)

where λ denotes the balance weight of two loss terms.
After several training epochs, the heterogeneous images are

mapped to the same feature space, therefore, we can obtain
the difference images by calculating the Euclidean distance
between these features

D(i, j) = ∥ZX(i, j)− ZY (i, j)∥2, D(i, j) ∈ [0, 1]. (7)

Theoretically, changed regions have larger distance than
unchanged regions if the features are strictly aligned. However,
due to the heterogeneity of images, learning such a well
aligned latent feature space is not an easy task. Though we
can use classical clustering or threshold methods to obtain
pseudo-labels, it strongly depends on the alignment ability of
encoders. As a result, we adopt an intuitive manner that only
select Top-N percent of pixels as changed pixels and others as
unchanged to obtain a reliable pseudo-label map. According
to the setting of N , we can calculate a threshold α by

α = percentile(D, N), (8)

where percentile(D, N) denotes the calculation of N -th
percentile in D. Then the pseudo-label map Dp is obtained
through

Dp(i, j) =

{
1, D(i, j) > α

0, otherwise
. (9)
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2) Pseudo-label Self-Learning: Starting from the difference
image, we have obtained the pseudo-label map. Then, the
pseudo-labels generated by the model itself are used to guide
the learning of change maps, and inversely refined themselves.
Since the features are obtained by different encoders, they
still contain modality-specific characteristics. To reduce the
heterogeneity, channel attention module is applied before the
feature fusion to adaptively emphasize important features
while suppressing irrelevant features across the channel. As
shown in Fig. 3, We first utilize channel attention [51] to two
feature representations ZX and ZY . After that, the attentive
features are concatenated and then fused by several convolu-
tional layers to obtain a prediction map p̂, this process can be
expressed as

p̂ = f
(
concat(attn(ZX), attn(ZY ))

)
, (10)

where attn(·) denotes channel attention operation [51], and
concat(·, ·) represents the concatenation of features along
channel dimension. f(·) is the Pseudo-label Refinement Net-
work (PRN). We use pseudo-labels generated by the network
itself to guide the learning process. Here the cross-entropy
loss together with a weight decay term is used to achieve the
pseudo-label self-learning,

LPRN = CE(Dp, p̂) +
1

2
β∥Wf∥22, (11)

where Wf denotes the weights of f , and β is the balance
parameter. Since the change detection can be treated as binary
classification task, the predictions p̂ has two channels, repre-
senting the probabilities of change and unchange. We only take
the channel representing changed probability to obtain change
map. In order to make the threshold pt general and applicable
to different datasets, we first use min-max normalization on
changed probability map to obtain p̂∗, and the change map is
obtained through

P(n)(i, j) =

{
1, p̂∗(i, j) > pt

0, otherwise
. (12)

where pt is a manually assigned hyper-parameter.
3) Progressive Refinement: Although above operations can

produce a change detection result, it is trained with the
assistance of mask, which strongly relies on the quality of
pseudo-labels, and the model can be failed when the noise ratio
of pseudo-labels is high. Therefore, we propose a progressive
refinement strategy to improve the quality of pseudo-labels
and also refine the change map in an iterative manner.

We can first obtain the prior change map P(0) after the
warm-up training. The initial mask is computed by M(1) =
1−P(0), then the mask is taken into PSN to obtain difference
map D(1), from which, we select the reliable pseudo-labels to
guide the learning of PRN. The output of PRN is a change
map P(1) of the first iteration, and the mask is then updated
through M(2) = 1−P(1) for the second iteration. The change
map is refined progressively with the update of pseudo-labels,
guiding to a more accurate change map.

The whole algorithm is shown in Algorithm 1. The predic-
tions of the last iteration are taken as final detection results.

Algorithm 1 Procedure of proposed model.
Input: Heterogeneous image pairs {Xj ,Yj}Nj=1.
Output: Binary change map P.

1: Warm-up training:
2: Train Pseudo Siamese Network (PSN) a few epochs with

Lwarm to obtain the prior change map P(0);

3: Progressive training:
4: for i = 1 to M do
5: Pseudo-label Generation:
6: Obtain the mask by M(i) = 1−P(i−1);
7: Train the PSN with LPSN to obtain difference map

D(i);
8: Obtain reliable pseudo-label map D

(i)
p from difference

map D(i) with Top-N method for the training of PRN.
9: Pseudo-label self-learning:

10: Train Pseudo-label Refinement Network (PRN) by
LPRN .

11: Obtain the change map P(i) by Eq. (12).
12: end for

13: return P = P(M).

IV. EXPERIMENTS

A. Datasets

We evaluate the performance of proposed method on five
datasets, including Italy, Yellow River, Shuguang, Texas, and
California datasets. The bi-temporal images and the corre-
sponding groundtruth are shown in Figs. 4-7.

Italy Dataset. Italy dataset consists of a near-infrared image
and an RGB optical image, both of which was taken in
Sardinia, Italy, where a lake flooding event occurred. Fig. 4(a)
is Pre-event image, near-infrared band of the Landsat-5 TM
acquired in September 1995, and Fig. 4(b) is the Post-event
optical image acquired in July 1996 from Google Earth. The
image size is 412×300, and the spatial resolution is 30m.

Yellow River Dataset. As Fig. 5 shows, Yellow River
dataset consists of a SAR image acquired by Radarsat-2 in
June, 2008, and an optical image acquired from Google Earth
in September, 2010. It is captured in Yellow River, China. The
spatial resolution of them is 8m, and their size is 291×444.

Texas Dataset. Fig. 6 shows the false color image of
Texas dataset. It is captured in Texas, America, and a forest
fire occurred in Fig. 6(b). Both of Pre-event and Post-event
images are multispectral images caputured through differet
sensors, where the Pre-event image is acquired by Landsat-
5 TM in August 2011, and the Post-event image is acquired
by EO-1 ALI in September 2011, with 7 and 10 channels
respectively. Their spatial resolution is 30m, and the spatial
size is 808×1534.

California Dataset. California dataset is a multispec-
tral/SAR image pair. As Fig. 7 shows, a blood happened within
the time period. The Pre-event multispectral image with 11
bands is acquired by Landsat-8 in January 2017, and the Post-
event SAR image is acquired by Sentinel-1A in February 2017.
The size of them is 2000×3500.
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Shuguang Dataset. It is also a SAR/optical image pair,
captured in Shuguang village, DongYing city of China. As
Fig. 8 shows, parts of farmland in Fig. 8(a) was changed
to buildings in Fig. 8(b). The Pre-event image is the SAR
image acquired in June, 2008, and the Post-event image is
optical acquired in September 2012. The spatial size of them
is 921×594, and the spatial resolution is 8m.

B. Experimental Settings and Evaluation Metrics

1) Details of Hyperparameter settings: In PSN, the two
auto-encoders have exactly the same structure and each layer is
a cascade of “Conv-BN-LeakyReLU” except for the last layer,
which uses the “Conv-BN-Sigmoid” structure. The kernel size
of all convolutional layers is 3x3. We set the number of
channels of the last layer as 5. In PRN, each layer, except
for the last one, is a cascade of “Conv-BN-ReLU” structure,
and the activation of the last layer is “Sigmoid”.

Through experiments, we found that the parameter N used
to generate pseudo-labels in Eq. (9) is not sensitive to model
performance, and then it is set to 0.08. The threshold pt in Eq.
(12) is set to 0.95, and the balance weights λ and β in the loss
function are set to 2 and 1, respectively. It should be noted that
the model architecture and the hyperparameters of all datasets
is consistent, and the sensitivity of hyperparameters will be
discussed in Section IV-E.

2) Training Details: Images are sliced to overlapped
patches to form a training set, and the batch size is set to
32. Data augmentations, such as flipping, scaling, rotation,
adding noise, etc. is used in training except for the warm-up
training. We use SGD as our optimizer, and the learning rate
is initialized to 1e-4. Our model is implemented by Pytorch
with an Intel Core i7-7700 CPU at 3.6 GHz and NVIDIA
GTX1080Ti GPU with 11GB memory and 32GB RAM.

3) Evaluation Criteria: In the experiments, we use OA
(Overall Accuracy), κ (kappa coefficient) and AUC (Area
Under the ROC Curve) curve to evaluate the performance of
different methods. The first two metrics are used to compre-
hensively evaluate the final binary change map, and the last
one is to evaluate the difference map.

In confusion matrix, TP (True Positive) denotes the number
of samples that are positive and are also detected as positive,
and TN (True Negative) denotes those negative samples that
are detected as negative. Both TP and TN are correct detec-
tions. On the contrary, FP (False Positive) are negative samples
that are detected as positive, and FN (False Negative) are those
positive samples detected as negative. FP and FN represent
wrong detections. Then the OA and kappa coefficient κ are
defined as:

OA =
TP + TN

TP + TN + FP + FN

PRE =
(TP + FP )(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)
2

κ =
OA− PRE

1− PRE
.

Besides, false alarm (FA) and miss alarms (MA) are used
to assist in quantifying detection results:

FA =
FP

FP + TN
,

MA =
FN

TP + FN
.

C. Comparisons with State-of-the-Art Methods

Our proposed method is compared with seven unsuper-
vised methods, i.e. INLPG [30], IRG-Mcs [12], FPMS [28],
NACCL [29], SCCN [18], cGAN [31], and CAAE [16]. We
reproduce them by the source code provided from the authors.
In the following, we first introduce the comparison methods,
and then provide the results on above five datasets. Note that in
Figs. 4-7, the pixels with white color stand for the TP, black,
green and red are for TN, FP, and FN, respectively.

INLPG [30] is a structure consistency based method, which
detects changes by comparing the structure features of two
images, rather than simply comparing the pixel values. IRG-
Mcs [12] constructs a robust K-nearest neighbor graph to
represent the structure of each image, and detects the changes
through a Markovian co-segmentation model by comparing the
constructed graphs within the same image domain. FPMS [28]
utilizes a new parametric mapping strategy based on the
modified geometric fractal decomposition and a contractive
mapping approach to project two images to the same modality,
then binarized the difference map under the unsupervised
Bayesian framework. NACCL [29] is a Bayesian statistical
approach, which relies on spatially adaptive class conditional
likelihoods to be adaptive to the considered heterogeneous
image pairs. The change map is then obtained based on the
model for each pixel and each image modality. SCCN [18]
constructs a deep convolutional coupling network to project
heterogeneous images to the same feature space, and then
uses threshold method to get change map. cGAN [31] make
use of a conditional GAN to translate Pre-event image to
Post-event one, and then utilizes an approximate network
to further narrow the gap between feature representations.
CAAE [16] takes a variety of constraints into consideration to
realize image translation under the auto-encoders framework.
Compared with GAN-based methods, CAAE [16] is more
portable and easy to train.

1) Results on Italy Dataset: As Figs. 4(a)-(b) show, there
are many mountain textures in this dataset, and the mountain
shadows of the bi-temporal images are not consistent, which
greatly hampers the detection of regions with real changes. The
final confusion maps of different change detection methods
are shown in Fig. 4, from which we can observe that there
are a large number of false alarms (FAs) of speckles in
NACCL [29], INLPG [30], cGAN [31] methods. CAAE [16]
exhibits better performance than others on this dataset, due to
the fact that it filters the difference map. Our proposed method
effectively alleviate this phenomenon thanks to the pseudo-
label self-learning and the progressive refinement strategy. The
quantitative evaluations are shown in Table I, which is in
consistent with the visual inspections.
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(g) (h) (i) (j) (k)

Fig. 4. Results of different methods on Italy dataset. (a) Pre-event image. (b) Post-event image. (c) GroundTruth. (d) FPMS. (e) NACCL. (f) INLPG. (g)
IRG-Mcs. (h) SCCN. (i) cGAN. (j) CAAE. (k) Proposed. The TP, TN, FP and FN are represented in white, black, green and red colors.

TABLE I
QUANTITIVE EVALUATIONS OF DIFFERENT METHOD ON ITALY DATASET

Method FA MA OA AUC κ

FPMS [28] 0.0487 0.2345 0.9398 0.9138 0.5798
NACCL [29] 0.1360 0.8011 0.8230 - 0.0396
INLPG [30] 0.1504 0.1572 0.9136 0.9238 0.3471

IRG-Mcs [12] 0.0708 0.2876 0.9158 0.8927 0.4688
SCCN [18] 0.0660 0.2616 0.9231 0.9186 0.5034
cGAN [31] 0.0949 0.2225 0.8966 0.9050 0.4299
CAAE [16] 0.0591 0.2733 0.9278 0.9119 0.5188

Ours 0.0097 0.2127 0.9777 0.9711 0.8016

2) Results on Yellow River Dataset: We visualize the con-
fusion maps of different methods on the Yellow River dataset
in Fig. 5. In contrast to the Italy dataset, there are no complex
effects of light and shadow on this dataset. The main detection
difficulty comes from the land around the river in the lower
right corner, which is clearly visible in optical modality while
is faint in the SAR modality. It can be seen that INLPG [30],
IRG-Mcs [12], cGAN [31] and CAAE [16] are caught in such
interferences, leading to a huge number of FAs. Although
SCCN [18] can successfully learn the feature mapping in bi-
temporal images, it still has many FAs. Compared with these
methods, our proposed one is able to detect the changes more
accurately. The quantitative evaluations are shown in Table II,
where our method shows superiority than other compared
methods.

TABLE II
QUANTITIVE EVALUATIONS OF DIFFERENT METHOD ON YELLOW RIVER

DATASET

Method FA MA OA AUC κ

FPMS [28] 0.0027 0.6402 0.9763 0.9221 0.4897
NACCL [29] 0.0209 0.3450 0.9685 - 0.5616
INLPG [30] 0.0367 0.1991 0.9579 0.9795 0.5363

IRG-Mcs [12] 0.0958 0.1911 0.9011 0.9030 0.3147
SCCN [18] 0.0332 0.1778 0.9231 0.9186 0.5691
cGAN [31] 0.0712 0.2504 0.9231 0.91 0.3541
CAAE [16] 0.0633 0.3144 0.9278 0.9210 0.3530

Ours 0.0068 0.1666 0.9877 0.9940 0.8110

3) Results on Texas Dataset: On Texas dataset, both the
changed and the unchanged regions are differ in color, which

brings difficulty in detecting the changes. If we have accurate
labels, it will be easy to detect the changes. However, the
acquisition of accurate labels is essentially cumbersome. As
Figs. 6(d)-(g) show, many unsupervised methods can only
detect a fraction of the changes, which due to that the more
discriminative changed regions, like the lower left side of
changed region, suppress other regions with less discrim-
ination in implicit feature learning. Since the features in
CAAE [16] method is mapped in an explicit manner, the
features of the whole changed region are explicitly retained,
reflecting the better detection results in Fig. 6(k). Our method
utilizes a couple of auto-encoders to encode the input images,
and the information of the source images is well preserved.
Therefore, it even obtains higher accuracy than CAAE [16].
The same conclusion can be obtained through the quantitative
evaluations shown in Table III.

TABLE III
QUANTITIVE EVALUATIONS OF DIFFERENT METHOD ON TEXAS DATASET

Method FA MA OA AUC κ

FPMS [28] 0.0045 0.9444 0.8960 0.2517 0.0850
NACCL [29] 0.0115 0.8440 0.9004 - 0.2154
INLPG [30] 0.0023 0.9497 0.8969 0.9569 0.0813

IRG-Mcs [12] 0.0066 0.8977 0.8986 0.9461 0.1521
SCCN [18] 0.0102 0.2568 0.9621 0.9604 0.7927
cGAN [31] 0.0546 0.4162 0.9094 0.9107 0.5194
CAAE [16] 0.0106 0.1483 0.9748 0.9903 0.8641

Ours 0.0141 0.0882 0.9777 0.9923 0.8838

4) Results on California Dataset: The California dataset,
as Figs. 7(a)-(b) show, has complex ground objects, such
as farmland, mountains, rivers and towns. Due to the lower
spatial resolution of this dataset, the artificial buildings in the
towns have little influence on the detection results. However,
various grid-shaped farmlands have totally different mappings
in the bi-temporal images, which brings difficulties for change
detection, and many methods thus generate too many false
alarms (FAs), for example, in Figs. 7(d), (f) and (h). The
complex image content also brings difficulties to the image
translation of cGAN [31], resulting in unsatisfactory detection
results, as Fig. 7(i) shows. In Fig. 7(g), there are some
rounded speckles, which may be derived from the super-
pixel segmentation of IRG-Mcs [12]. Our method achieves
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Fig. 5. Results of different methods on Yellow River dataset. (a) Pre-event image. (b) Post-event image. (c) GroundTruth. (d) FPMS. (e) NACCL. (f) INLPG.
(g) IRG-Mcs. (h) SCCN. (i) cGAN. (j) CAAE. (k) Proposed. The TP, TN, FP and FN are represented in white, black, green and red colors.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 6. Results of different methods on Texas dataset. (a) Pre-event image. (b) Post-event image. (c) GroundTruth. (d) FPMS. (e) NACCL. (f) INLPG. (g)
IRG-Mcs. (h) SCCN. (i) cGAN. (j) CAAE. (k) Proposed. The TP, TN, FP and FN are represented in white, black, green and red colors.
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Fig. 7. Results of different methods on California dataset. (a) Pre-event image. (b) Post-event image. (c) GroundTruth. (d) FPMS. (e) NACCL. (f) INLPG.
(g) IRG-Mcs. (h) SCCN. (i) cGAN. (j) CAAE. (k) Proposed. The TP, TN, FP and FN are represented in white, black, green and red colors.

superior result compared with other unsupervised methods.
The quantitive evaluations are shown in Table IV.

TABLE IV
QUANTITIVE EVALUATIONS OF DIFFERENT METHOD ON CALIFORNIA

DATASET

Method FA MA OA AUC κ

FPMS [28] 0.1448 0.1755 0.8540 0.9132 0.2464
NACCL [29] 0.1109 0.1440 0.8879 - 0.3182
INLPG [30] 0.0918 0.2139 0.8971 0.9227 0.3477

IRG-Mcs [12] 0.0659 0.2635 0.9266 0.9232 0.4010
SCCN [18] 0.0879 0.1174 0.9110 0.9532 0.3956
cGAN [31] 0.3295 0.2527 0.8359 0.8305 0.2749
CAAE [16] 0.0502 0.1923 0.9360 0.9471 0.5585

Ours 0.0201 0.3596 0.9703 0.9443 0.6023

5) Results on Shuguang Dataset: This dataset exhibits
more details of ground, due to its higher spatial resolution. The
changed areas range from farmland to the artificial buildings.
Artificial architecture is difficult to detect because it is more
complex than natural landscape. Almost all methods are inac-
curate in edge detection, especially the black farmlands in the
original image. Probably because their mapping relationship
in the bi-temporal image is obviously different from those
around them. There are a lot of noise spots in the results
of cGAN [31] and CAAE [16], which mainly attribute to
the inaccurate image translation. The binarized segmentation
algorithm, like in FPMS [28], can suppress these noises. Our
method also performs well in noise suppression as Fig. 8(k)
shows. Nevertheless, our method can not achieve the best

quantitive evaluations in Table V in terms of AUC and kappa
coefficient κ, due to the lack of prior knowledge.

TABLE V
QUANTITIVE EVALUATIONS OF DIFFERENT METHOD ON SHUGUANG

DATASET

Method FA MA OA AUC κ

FPMS [28] 0.0715 0.0027 0.9317 0.9938 0.5412
NACCL [29] 0.0394 0.3946 0.9444 - 0.4700
INLPG [30] 0.0203 0.2176 0.9706 0.9827 0.6945

IRG-Mcs [12] 0.0258 0.2163 0.9654 0.9739 0.6576
SCCN [18] 0.0373 0.4333 0.9445 0.9163 0.4551
cGAN [31] 0.0890 0.4933 0.8920 0.8323 0.2560
CAAE [16] 0.0518 0.1750 0.9425 0.9655 0.5425

Ours 0.0142 0.4324 0.9708 0.9720 0.6552

D. Ablation Studies

In this section, we conduct experiments incrementally to
demonstrate the effectiveness of different components or
strategies. We take the model that only has the PSN as our
baseline, and the experimental results are shown in Table VI.

1) Necessity of Warm-up Training: In our progressive re-
finement strategy, warm-up training is very important since
it provides adequate initialization for the iteration structure.
From the first and the second rows of Table VI, we can observe
that warm-up training dramatically improves the detection
accuracy except for the Texas dataset. The prior map generated
by the warm-up training on Texas dataset is inaccurate, leading
to poorer initialization. Due to the absence of PRN and
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Fig. 8. Results of different methods on Shuguang dataset. (a) Pre-event image. (b) Post-event image. (c) GroundTruth. (d) FPMS. (e) NACCL. (f) INLPG.
(g) IRG-Mcs. (h) SCCN. (i) cGAN. (j) CAAE. (k) Proposed. The TP, TN, FP and FN are represented in white, black, green and red colors.

progressive refinement, the model training in this case may
be misled to a false optimization direction. From the last two
rows in Table VI, we find that such a misleading phenomenon
can be eliminated by PRN with attention and the progressive
refinement.

2) Necessity of Pseudo-label Self-Learning: After warm-up
training, we can obtain several pseudo-labels through PSN.
These generated pseudo-labels are utilized to guide the model
learning. To verify the necessity of pseudo-label self-learning,
we conduct ablative experiments and the results are shown in
Table VI. It should be noted that there is a channel attention
structure in our PRN, we list the results with/without channel
attention to further demonstrate the effectiveness of attention
mechanism in our model. It can be seen from the table that
the introduction of pseudo-label self-learning strategy brings
great improvements on the detection accuracy, and our model
also benefit from the channel attention.

3) Effectiveness of Progressive Refinement Strategy: We
know that the pseudo-labels are not accurate even though they
are generated by PSN after the warm-up training. Therefore,
training the model only by generated coarse pseudo-labels
is infeasible, and we should refine them by a progressive
refinement strategy. The last row in Table VI shows the results
on five datasets. We can observe from the table that the
progressive refinement strategy brings the increase of kappa
coefficient between 1.5% and 8.3%, except for Texas dataset
that decreases about 1.3%.

E. Hyper-parameter Analysis

There are two critical hyperparameters in our model, i.e.
the proportion of changed pixels in pseudo-labels (N ) and the
segmentation threshold (pt). In this section, we provide the
selection principle of them.

Based on the assumption that changed regions are always
small proportion of the whole image, we choose a small value
of N . Keeping other configurations unchanged, we investigate
the influence of N by experiments. Fig. 9 draws the variation
of kappa coefficient with the increase of N . The kappa
coefficient dramatically increases up to N = 5%. But when
N > 5%, kappa coefficient varies faintly. For Texas and Italy
datasets, the best results are obtained under N = 8%, while
for other three datasets, the variations are small, which proves

that the proposed method is insensitive to pseudo-labels. After
comprehensive consideration, we select N = 8% in our model.

Fig. 9. Kappa coefficient κ of proposed method on five datasets with different
value of N .

pt is a threshold used to obtain the binary change map. If
we choose a higher value, the MAs rate will be high. On the
contrary, a lower pt will increase the FAs rate. The detection
performance of our model varies on five different datasets,
as depicted in Fig. 10. We find that when pt = 0.95, our
model can achieve the highest kappa coefficient on almost all
datasets. Therefore, pt is set to 0.95.

V. CONCLUSION

In this paper, we propose an unsupervised progressive
modality-alignment heterogeneous change detection method.
The proposed model achieves modality-alignment and pseudo-
label refinement alternately, improving the accuracy of change
detection. A pseudo Siamese network is firstly used to map
and align the features of bi-temporal images, and then the
pseudo-labels are generated and refined by the model itself.
After that, these pseudo-labels are taken as guidance to learn
the change map. Such a pseudo-label self-learning strategy
can effectively suppress false alarms, thus further improving
the detection accuracy. The whole model is under an iterative
framework, enabling it to well locate some subtle details.
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TABLE VI
ABLATION STUDIES

Modules Kappa Coefficient

Warm Up
Training

PRN
w/o Attention

PRN
w/ Attention

Progressive
Refinement Italy Yellow River Shuguang Texas California

0.2146 0.4224 0.2205 0.6642 0.1223
✓ 0.7492 0.7586 0.4777 0.1703 0.3946
✓ ✓ 0.7969 0.7943 0.5553 0.6143 0.4450
✓ ✓ 0.7850 0.7960 0.5722 0.8965 0.5314
✓ ✓ ✓ 0.8016 0.8110 0.6552 0.8838 0.6023

Fig. 10. Kappa coefficient κ of proposed method on five datasets with
different value of pt.

Experimental results also validate the effectiveness of the
proposed model. However, our proposed method contains a
two-stage training, which may be inefficient in some situations.
Moreover, it has many hyper-parameters to be manually set,
such as the proportion in producing pseudo-labels and the
threshold in generating the binary map, which is inflexible and
requires some priors. In the future, we will explore a simpler
and general unsupervised framework for heterogeneous image
change detection.
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T. Hermosilla, “Description and validation of a new set of object-
based temporal geostatistical features for land-use/land-cover change
detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.
121, pp. 77–91, 2016.

[5] Z. Zhu, “Change detection using landsat time series: A review of
frequencies, preprocessing, algorithms, and applications,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 130, pp. 370–384, 2017.
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