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Abstract—Real-time semantic segmentation of remote-sensing
images demands a trade-off between speed and accuracy, which
makes it challenging. Apart from manually designed networks,
researchers seek to adopt neural architecture search (NAS) to
discover a real-time semantic segmentation model with optimal
performance automatically. Most existing NAS methods stack up
no more than two types of searched cells, omitting the characteris-
tics of resolution variation. This paper proposes the Hierarchical
shared Architecture Search (HAS) method to automatically build
a real-time semantic segmentation model for remote sensing
images. Our model contains a lightweight backbone and a multi-
scale feature fusion module. The lightweight backbone is carefully
designed with low computational cost. The multi-scale feature
fusion module is searched using the NAS method, where only
the blocks from the same layer share identical cells. Extensive
experiments reveal that our searched real-time semantic seg-
mentation model of remote sensing images achieves the state-
of-the-art trade-off between accuracy and speed. Specifically,
on the LoveDA, Potsdam, and Vaihingen datasets, the searched
network achieves 54.5% mIoU, 87.8% mIoU, and 84.1% mIoU,
respectively, with an inference speed of 132.7 FPS. Besides, our
searched network achieves 72.6% mIoU at 164.0 FPS on the
CityScapes dataset and 72.3% mIoU at 186.4 FPS on the CamVid
dataset.

Index Terms—real-time semantic segmentation, neural net-
work architecture search, feature aggregation module, hierar-
chical shared search strategy.

I. INTRODUCTION

Semantic segmentation of remote sensing images holds
significant importance for applications, such as comprehensive
land use mapping [1] and urban change detection [2]. Most
solutions consume massive computing costs, which brings
challenges for moving platforms in reality that need an instant
response, such as self-driving cars [3], real-time disaster
monitoring [4], etc. Therefore, more and more researchers are
paying attention to real-time semantic segmentation of remote
sensing images to find a trade-off between speed and precision.

Many excellent works [5], [6], [7], [8], [9], [10], [11]
have been proposed in real-time semantic segmentation, which
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can be transferred to remote sensing scene. Some researchers
reduce the computation cost of the network by decreasing
the number of channels or limiting the input size, such as
ENet [12] and ESPNet [13]. Nowadays, most works usually
adopt lightweight classification networks as their backbone
and design an efficient feature aggregation part to improve
the speed and remedy the accuracy decreasing simultaneously,
such as SwiftNet [14], DFANet [15], and BiSeNet [16]. Their
differences mainly rely upon feature aggregation modules
since how to design an efficient feature aggregation model
is the key to real-time semantic segmentation. Recently, there
are also some real-time semantic segmentation methods that
are directly designed for remote sensing images, such as
ABCNet [17], DSANet [18], and UNetFormer [19]. Although
these artificially designed models have made some progress,
they have the following drawbacks: (1) Existing real-time
semantic segmentation methods of remote sensing images are
designed by human experts, and their performance is limited
by expert experience, so the obtained architecture may not be
optimal. (2) Existing methods adopt the same feature fusion
structure for various feature maps during the feature fusion
process, making the network unable to fully obtain context
information at different scales. Therefore, we attempt to use
neural architecture search (NAS) to automatically design a
real-time semantic segmentation network for remote sensing
images.

Recently, NAS has made remarkable achievements in the
automatic design of efficient networks [20]. NAS aims to
discover the optimal network by applying an efficient search
strategy in a well-designed search space. At present, NAS
has achieved remarkable progress in image classification [21],
[22], [23], semantic segmentation [24], [25], etc. In this
paper, we focus on exploring NAS to automatically design
an efficient real-time semantic segmentation model for remote
sensing images, to alleviate the problem of human-designed
networks consuming too many resources and relying heavily
on expert experience. Autodeeplab [26] is an earlier work
introducing NAS to semantic segmentation. It searches the
cell architecture and the connection operations between two
nodes (identity, downsampling, and upsampling). GAS [27]
explores graph convolution neural network to transfer structure
information between cells and introduce latency constraints to
improve the semantic segmentation speed. Previous methods
follow the pipeline to search an optimized cell and stack copies
of it with task demand. Although searching for one single fixed
cell can improve the searching speed, it ignores the variations
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of feature maps in the size and the channel numbers at various
stages of the network, which may decrease the performance.

Therefore, we propose the hierarchical shared architecture
search (HAS) method for real-time semantic segmentation
of remote sensing images. Compared with existing methods,
the proposed method has the following advantages: (1)Au-
tomatic design based on NAS. We introduce NAS to break
through the limitations of human expertise by automatically
designing the network structure, thus discovering a superior
segmentation architecture. (2) Automatic design of different
feature fusion structures (cells) for various resolutions. Our
method automatically designs different cells for feature maps
of various resolutions in our carefully designed search space.
Compared to existing NAS algorithms that only search for a
single cell structure, our method can better capture multi-scale
semantic information. Combined with our carefully designed
lightweight backbone, our method achieves improved semantic
segmentation results while effectively balancing speed and
accuracy. Experiments results show that our model achieves
a state-of-the-art trade-off between speed and accuracy. The
proposed method achieves 54.5%, 87.8% mIoU, and 84.1%
mIoU on the LoveDA, Potsdam, and Vaihingen datasets re-
spectively, with an inference speed of 132.7 FPS on a GeForce
RTX 3090 with an image size of 1024×1024 pixels. Besides,
the proposed model achieves 72.6% mIoU and 164.0 FPS on
the CityScapes dataset and 72.3% mIoU and 186.4 FPS on the
CamVid dataset.

The main contributions are as follows:
• We design a novel real-time semantic segmentation net-

work for remote sensing images that consists of a well-
designed lightweight backbone and a feature aggregation
module, where the feature aggregation module is auto-
matically designed by the NAS method.

• We propose a hierarchical shared search strategy with a
novel search space, namely HAS. In this search space,
different network layers have various cell architectures,
which can better capture contextual information at differ-
ent scales.

• We adopt the HAS strategy combined with a carefully de-
signed lightweight backbone to automatically design the
best network. Furthermore, to improve the search speed,
we propose an operation selection strategy, which selects
important operations to participate in network searches to
enhance search efficiency. Experimental results show that
the searched network achieves a state-of-the-art balance
between speed and accuracy.

The rest parts are organized as follows. A detailed in-
troduction to the relevant work is provided in Section II.
Section III introduces the proposed network structure, search
space, and search method. Section IV shows the specific
searched cell architecture and introduces experimental results.
The conclusion is given in Section V.

II. RELATED WORK

In recent years, real-time semantic segmentation and NAS,
have achieved impressive results in domains such as remote
sensing scene perception and autonomous driving. This section

provides a comprehensive review of relevant works of real-
time semantic segmentation and NAS.

A. Semantic Segmentation

Semantic segmentation is a crucial task that aims to partition
images into different semantic regions. Fully convolutional
network (FCN) [28] is a common forerunner based on CNN,
which can learn the hierarchical structure of features. Later
on, various methods based on a type of encoder-decoder
backbone network appear. SegNet [29] uses max pooling
indexes technology to upsample features in the decoding stage.
U-net [30] introduces skip-connection between the decoder
layer and the encoder layer. DeepLab [31] presents an atrous
spatial pyramid pooling (ASPP) module, which can capture
multi-scale features of objects. PSPNet [32] proposes a pyra-
mid pooling module to better integrate context information.
DANet [33] enhances feature representation by introducing
an attention module. HDNet[34] proposes a hybrid distance
network to get the context information of each point.

B. Real-time Semantic Segmentation

Due to the real-time requirement of various application
platforms with limited computing resources, such as real-time
disaster monitoring, self-driving cars, and so on, an increasing
number of researchers have turned their attention to real-time
semantic segmentation. ENet [12] designs an encoder-decoder
architecture, which is specifically created for tasks requiring
low latency. ICNet [13] incorporates multi-resolution branches
to effectively utilize high-resolution and low-resolution infor-
mation, which can quickly achieve high-quality segmentation.
BiseNet [9] uses two branches to get spatial information and
context information respectively. Fast-SCNN [8] proposes a
learning-to-downsample method that enables the two-branch
network to share shallow feature maps. SwiftNet [14] em-
ploys lightweight upsampling modules to reconstruct images.
BiseNetv2 [16] proposes a feature aggregation module based
on bi-directional aggregation, which enables the information
of two paths to be fully integrated. DSANet[35] reduces
computation by employing channel split and shuffle strategies
in the semantic encoding branch. SGCPNet [11] designs a
context propagation component to reconstruct the lost spatial
information and improve the model efficiency. SegNeXt [36]
design a new network structure, which has the characteristics
of a large receptive field, multi-scale, and adaptability.

C. Real-time Semantic Segmentation of Remote Sensing Im-
ages

Recently, in addition to RGB images, there has been sig-
nificant attention given to real-time semantic segmentation for
remote sensing images. Liu et al. [37] present a path-wise
semantic segmentation method for remote sensing images.
DDRNets [38] adopts a new contextual information extractor
combined with multiple bilateral fusions to achieve a trade-off
between speed and accuracy. ABCNet [17] introduces a novel
feature aggregation module and an attention enhancement
module based on Bisenet [9]. DSANet [18] proposes a simple
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attention module to improve the inference speed for large
images. UNetFormer [19] proposes a UNet-like Transformer
to realize an efficient segmentation of remote sensing images.

D. Neural Architecture Search

NAS can automatically discover the best-performing neural
network, which has attracted much attention because of its ex-
cellent performance. Early NAS methods are mainly based on
reinforcement learning (RL) [21], [39], [40] and evolutionary
algorithm (EA) [41], [22]. RL-based methods usually comprise
a controller, which is used to sample a network structure. Then
the sampled network is trained from scratch and returns a
validation accuracy, which is used to update the parameters
of the controller. EA-based methods are alternatives to RL-
based methods, which evolve the network via mutation and
recombination.

Although the above methods have made promising progress,
they require huge computational resources. To address this
issue, one-shot methods are proposed. One-shot methods train
the parent network only once, and each sub-network inher-
its the weights of the parent network. NAO [42] embeds
architecture into a latent space and performs optimization
before decoding. ENAS [43] introduces a parameter-sharing
method between sampled networks. DARTS [23] relaxes a
discrete search space to be continuous, so gradient descent
can be used for optimization. This dramatically reduces the
resources needed for the search. Although DARTS [23] greatly
reduces the search time, the introduction of architecture pa-
rameters inevitably leads to the problem of occupying too
much memory. P-DARTS [44] increases the network depth
and reduces the type of operations stage by stage, so as to
reduce the occupation of memory. PC-DARTS [45] proposes a
sampling mechanism based on channel, which lets only 1/K
channel nodes train each time, and thus greatly reduces the
memory consumption. In a similar vein of research, [46] and
[47] progressively increase network complexity while training
ranking networks in a parallel manner to reduce resource
consumption.

Since DARTS [23] was introduced, many approaches have
been carried out based on this method. DARTS greatly reduces
the computing resources required by reinforcement learning or
evolutionary algorithm and greatly promotes the development
of NAS. Our work also adopts a differentiable NAS method
and extends it to a more general hierarchical setting.

E. NAS for Semantic Segmentation

Due to the success of NAS in image classification, NAS
has been introduced into other fields, such as semantic seg-
mentation, object detection, etc. For semantic segmentation,
DPC [48] constructs a novel search space that successfully ex-
tends NAS to dense image prediction tasks. AutoDeeplab [26]
simultaneously searches cell architecture and resolution size to
meet semantic segmentation requirements. Recently, CAS [49]
proposes a searched multi-scale structure to make NAS more
suitable for semantic segmentation. GAS [27] introduces a
graph convolution neural network to transfer structure infor-
mation between cells so that each cell structure is independent

of each other. M-FasterSeg [50] designs multiple resolu-
tion branches for real-time semantic segmentation, which is
searched by NAS.

Although above approaches have made considerable
progress, their search methods still imitate the image classifica-
tion work and adopt the way of sharing one or two same cells,
which is not conducive to processing multi-scale images. So,
we propose a hierarchical shared search method to discover
the network structure which is more suitable for semantic
segmentation.

III. METHOD

This section describes our network structure and the pro-
posed search method. Firstly, the whole network structure is
introduced in detail, including a backbone and an automat-
ically designed multi-scale feature fusion module. Then, an
automatically design method for feature fusion modules is de-
scribed, namely the proposed hierarchical shared architecture
search method, including the search space definition and the
search strategy.

A. Network Structure

The whole network structure mainly includes a backbone
and a feature aggregation module, which is shown in Fig. 1.

1) Backbone: The backbone network consists of five layers:
Layer 1 - Layer 5. Each of these five layers 2× downsamples
its input feature maps. First, a 3×3 convolution operation
is performed on the RGB input image of size (w, h, 3) to
obtain a feature map of size (w, h, 32). Then, two conventional
convolution layers (Layer 1 and Layer 2) are added for feature
maps’ downsampling and channel expansion. Each of these
two layers contains two 3 × 3 convolutions. Meanwhile,
the number of channels from Layer 1 to Layer 2 gradually
increases from 32 to 128. Finally, the next three layers (Layer 3
- Layer 5) are used to extract high-level semantic information.
Each layer is a gather and expansion block (GEblock), which is
shown in Fig. 2. A GEblock includes three layers, one GElayer
S1 and two GElayer S2. The GElayers adopt the bottleneck
architecture used by ResNet [51]. Compared with GElayer
S2, in GElayer S1, there is an additional 3 × 3 depth-wise
convolution with a stride of 2 in the main path and the shortcut
path, which downsamples the input feature map and scales up
the receptive field. The number of channels for the last three
layers remains at 128.

2) Automatically Designed Multi-scale Feature Fusion
Module: There are a lot of ways to combine two kinds of
feature responses, such as concatenation and element-wise
summation. However, the feature maps output by the backbone
have different sizes. Simple composition neglects the variety
of both kinds of information, resulting in poor performance
and difficulty in optimization. So, an automatically designed
multi-scale feature fusion module is proposed to utilize multi-
scale feature information thoroughly.

The proposed ADMFF module is obtained with HAS. As
shown in Fig. 1 (a), the ADMFF module is made up of
six searching cells. Specifically, this module contains three
layers and each layer includes two same cells. There are three
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Fig. 1: The overall architecture. (a) the proposed network structure consists of a backbone and an ADMFF module. (b) the shared concrete
structure of three types of cells in the ADMFF module.
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Fig. 2: The concrete structure of GEblock. It consists of three
GElayers. GElayer S1 and S2 work as bottlenecks with similar
structures. (dwconv: depth-wise convolution)

different cells, namely the top cell, the middle cell, and the
bottom cell, respectively. The inputs of the feature aggregation
module are the outputs of Layers 3, 4, and 5 of the backbone.
The top cell and middle cell accept the output from their same
layer and the deeper layer as their inputs. The inputs of the
bottom cell are the output of the same layer and the top cell.
Finally, we concatenate the outputs of the three-layer cells and
get the last prediction result after a 3 × 3 convolution.

The automatic design method of the proposed feature ag-
gregation module will be described in subsection III-B and
subsection III-C. Following most NAS work, we describe the

ADMFF module in terms of search space and search strategy.

B. Architecture Search Space

In this subsection, the search space built for searching
the structure of the feature aggregation module is carefully
introduced.

Most existing NAS approaches adopt the way of sharing
one cell, so the network structure has many duplicate units.
Although these methods can increase the efficiency of NAS,
a single structure does not suit different feature maps very
well. For semantic segmentation, different layers have to deal
with feature maps of various resolutions, so it is better for
each layer to design the corresponding structure according to
diverse resolutions. Meanwhile, existing semantic segmenta-
tion networks have shown good performance in the feature
extraction part, and recently researchers mainly devote their
efforts to effectively fusing features of different layers. So,
we also concentrate on the feature aggregation module and
propose a hierarchical shared search space for the feature
aggregation module.

As shown in Fig. 1 (a), the search space of the ADMFF
module has three layers. Each layer corresponds to the input
with different resolutions, and each layer has two cells with
the same structure. In other words, there are three cells (top
cell, middle cell, and bottom cell) that need to be searched in
the search space.

The cell is represented as a directed acyclic graph (DAG),
as shown in Fig. 1 (b). For speed concerns, the number of
nodes is limited to 4 in the cell, containing two input nodes,
an intermediate node, and an output node. The edge between
nodes represents an operation oi.

To reduce the dependence of search results on expert expe-
rience, we use a large search space O. There are three types
of operations in O, i.e., non-learnable operations, standard
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TABLE I: The whole search space consists of 14 operations. Conv is
separable convolution, dconv represents dilated separable convolution.

Index Operation Index Operation
1 skip connection 8 7 × 7 conv
2 3 × 3 max pooling 9 3 × 3 dconv (dilation=2)
3 5 × 5 max pooling 10 3 × 3 dconv (dilation=4)
4 3 × 3 avg pooling 11 3 × 3 dconv (dilation=8)
5 5 × 5 avg pooling 12 5 × 5 dconv (dilation=2)
6 3 × 3 conv 13 5 × 5 dconv (dilation=4)
7 5 × 5 conv 14 5 × 5 dconv (dilation=8)

convolutions, and dilated convolutions. Three types of non-
learnable operations are considered, including avg pooling,
max pooling, and skip connection. The kernel sizes for avg
pooling and max pooling are 3 × 3 and 5 × 5, respectively.
The standard convolutions with kernel sizes of 3, 5, and
7 are commonly utilized in CNNs. Dilated convolution can
enlarge the receptive field without losing resolution and is
extensively adopted in semantic segmentation. Therefore, we
also adopt these operations in the operation set O. The dilated
convolutions with the 2, 4, and 8 ratios are adopted. It is worth
mentioning that we adopt the depth separable technique for
both standard convolutions and dilated convolutions. Because
depth-separable convolutions are more efficient than regular
convolutions, we decompose the regular convolution into two
steps, i.e., depth-wise convolution and point-wise convolution.
So, in total, the operation set O consists of 14 operations,
which is listed in Table I.

C. Hierarchical Shared Architecture Search Strategy (HAS)

In this subsection, we will describe the hierarchical shared
search method, including continuous relaxation, optimization
algorithm, and decoding.

1) Continuous Relaxation: Taking the top cell as an ex-
ample, X1 and X2 denote two input nodes, Y represents
the output node, and X3 is the intermediate node. The input
nodes X1 and X2 are transferred to the intermediate node X3

after operation o. At node X3, the two inputs are added and
followed by a ReLU activation function. Finally, the output of
X3 is transferred to Y through operation o. So the whole cell
can be represented by Eq. (1):

Y = Cell(X1, X2). (1)

Each node in our cell is expressed as the sum of the outputs
after k operations (k represents the number of operations). To
make the search process differentiable, three vectors, α, β, γ,
are introduced to make independent k operations continuous.
Then, according to decoding rules, we determine which op-
eration should be selected for the edge of the corresponding
cell.

Within the cell, the transfer process of the precursor node
to the next node can be expressed by Eq. (2):

yi =
∑
o∈O

o(xi) (2)

where xi represents the precursor nodes, yi is the next node
and o denotes one operation in operation set O.

Therefore, Eq. (1) can be expanded into Eq. (3):

Y =
∑
o∈O

o(
∑
o∈O

o(X1) +
∑
o∈O

o(X2)) (3)

To make the search space continuous, we introduce a 1 ×
k vector for each edge, namely α0, α1, α2, which is used to
measure the importance of each operation in operation set O.
So, Eq. (3) can be expressed as:

Y =
∑
o∈O

αo
2o(

∑
o∈O

αo
0o(X1) +

∑
o∈O

αo
1o(X2)), (4)

where α = [α0, α1, α2] is the architecture parameter, and it is
normalized by Eq. (5),

αo
i=

exp(
−
α
o

i )∑
o′ϵO

exp(
−
α
o′

i )

(5)

where i = 0, 1, 2. αo
i denotes the weight of the operation o on

the ith edge. αo
i satisfies

∑
oϵO

αo
i = 1.

The architecture vectors for middle cell β and bottom cell
γ can also be done as that for top cell.

2) Optimization: Since the search space is differen-
tiable, the optimization process can adopt cross optimization
method [23]. The cross optimization combines the network
training with the optimization of architecture parameters,
which speeds up the network search speed. Because we in-
troduce three different architecture parameters into the search
strategy, we need to optimize the three parameters at the same
time in the cross optimization, which is different from previous
methods.

When the search space is continuous, the independent oper-
ations are linked by architecture parameters, which also need
to be optimized. Since architecture parameters are involved in
the calculation process of the neural network, they should be
optimized at the same time. Therefore, after introducing the
architecture parameters, the training process is split into two
parts, one part optimizes the network parameters and the other
part optimizes the architecture parameters.

Accordingly, the training set is divided into trainA and
trainB, which are used to learn the network parameters and
architecture parameters, respectively. We calculate the loss
on trainA and trainB and minimize them via the gradient
descent method. The formula for this optimization process is:

• Updating ω by descending ∇ωLtrainA (ω, α, β, γ)
• Updating architecture parameters α, β, γ by descending

∇α,β,γLtrainB(ω, α, β, γ)

where ω represents network weights. α, β, γ is the architecture
parameters. L denotes the cross entropy loss.

In the optimization process, we follow the design of Au-
toDeepLab [26], which begins to optimize the architecture
parameters α, β, and γ after training 20 epochs.

3) Decoding: When the network architecture search is
completed, we need to decode the continuous search space
to get the final network structure. Following the work of [23],
for edge i, the final operation is derived by:

oi = argmaxoϵOα
o
i (6)
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So, between two nodes, only the strongest operation is
ultimately reserved. Similarly, the above processing is done
for vectors β and γ. Finally, three structure fixed cells are
generated through the above decoding, which are used to
construct our feature aggregation module.

IV. EXPERIMENTS

In this section, the datasets and the search process are
presented in detail. Then, the operation set selection strategy
is described. After that, the effectiveness of our hierarchical
sharing strategy is verified. Finally, we show the semantic
segmentation results of the proposed model on four datasets.

A. Dataset and Search Details

1) Dataset: To evaluate the effectiveness of our proposed
method, experiments are conducted on the LoveDA 1, Pots-
dam 2, Vaihingen 3, CityScapes [52], and CamVid [53]
datasets. LoveDA, Potsdam, and Vaihingen are three popular
datasets used for semantic segmentation of remote sensing
images. CityScapes is a large street view dataset, which is
known for being a challenging dataset in semantic segmenta-
tion. CamVid is another widely used street view dataset for
real-time semantic segmentation.

The LoveDA dataset is highly challenging. It comprises a to-
tal of 5987 fine-resolution optical remote sensing images(GSD
0.3 m), each with a size of 1024×1024 pixels. The dataset is
divided into training, validation, and testing sets, containing
2522, 2669, and 1796 images, respectively.

The Potsdam dataset comprises 38 high-resolution images,
each measuring 6000× 6000 pixels. Within the dataset, there
are four multi-spectral bands (red, green, blue, and near-
infrared), along with the Digital Surface Model (DSM) and
Normalized Digital Surface Model (NDSM). To evaluate our
models, we selected 23 images from the dataset for training
and 14 images for model testing.

The Vaihingen dataset comprises 33 aerial images. Each
image has dimensions of 2494×2064 pixels and consists of
three bands corresponding to red, near-infrared, and green
wavelengths. Additionally, the dataset includes DSM, which
represents the height of all object surfaces within the images.
In our experiments, 16 images are selected for training, while
the remaining 17 images are used for testing.

The CityScapes collects a lot of stereoscopic video se-
quences, which cover 50 different cities’ streets, consisting of
30 classes. There are 5000 pixel-level fine annotated images
of size 1024 × 2048 and about 20000 coarsely annotated
training images. Our experiments utilize 5000 fine pixel-
level annotated images, with 1525 test images, 500 validation
images, and 2975 training images.

The CamVid is a road scene set and contains 701 images
with a size of 720 × 960 pixels. These images are divided
into 233 test images, 101 validation images, and 367 training
images.

1https://github.com/Junjue-Wang/LoveDA
2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-

labelvaihingen.html
3http://www2.isprs.org/commissions/comm3/wg4/2d-sem-

labelpotsdam.html

TABLE II: Performance of different searched networks. Network-
L, Network-P, and Network-C are searched on the LoveDA dataset,
Potsdam dataset, and CityScapes dataset respectively. These three
networks are retrained, and tested on the LoveDA dataset.

Network mIoU(%)

Network-P 53.1
Network-C 54.2
Network-L 54.5

2) Search Details and Search Dataset: During the search
process, the training images are sampled into two equal sub-
sets: trainA and trainB. One subset is used for optimizing
the architecture parameters, while the other subset is used for
optimizing the weight parameters of the network. The batch
size is limited to 4 due to constraints in GPU memory. For
architecture parameters α, β, and γ, we employ the Adam
optimizer with a weight decay of 0.001 and a learning rate of
0.0003. For network weight ω, the SGD optimizer is adopted.
The learning rate is 0.05, and a “poly” learning rate strategy
is utilized. The search process is set to 200 epochs.

The search process is conducted on the LoveDA dataset.
Since the LoveDA dataset is large, it can provide more samples
and diversity for model searching, which helps to find a
more robust model for real-time semantic segmentation of
remote sensing images. The search process is also performed
on the CityScapes [52] dataset and the Potsdam dataset. We
tested the performance of different models which are searched
on different datasets, and the results are shown in Table II.
Experimental results show that Network-L can achieve better
semantic segmentation accuracy on remote sensing images.

B. Operation Set Selection Strategy

To decrease the impact of human experience on search
results, we introduce a large operation set containing 14
conventional operations. However, too many operations will
reduce the search efficiency. Therefore, the entire network
architecture search process is divided into two stages.

The first stage goes to search optimal network with the
operation set mentioned above. To improve the experimental
efficiency, we train the network 20 times with 30 epochs for
each time and then count the weight of each operation each
time. After 20 times of training, the average weight of each
operation at the 30th epoch is obtained. Then, the ratio of the
average weight of each operation to the total weight of all
operations can be calculated. As shown in Fig. 3, we can see
that the accumulated weight of the top 6 operations accounts
for about 96 % of total operations, so they can be used to
form the operation set for the next search stage.

The second stage is to search optimal network with these
top 6 operations, including:

• 3 × 3 max pooling
• 3 × 3 avg pooling
• skip connection
• 3 × 3 conv
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Fig. 3: The average weight of each operation after 20 experiments.
conv: separable convolution, dconv: dilated separable convolution

TABLE III: The performance (mIoU(%)) of the HAS strategy and the
traditional shared strategy on the LoveDA dataset and the CityScapes
validation set.

Method LoveDA CityScapes

Traditional shared 51.6 71.3
HAS 54.5 73.9

• 3 × 3 dconv (dilation=2)
• 3 × 3 dconv (dilation=8)
We have a total of 14 candidate operations, so there are

149 structures in our search space (there are nine edges to
be searched, and each edge has 14 choices). Thanks to the
operation set selection strategy, the whole search process takes
about 2 days on a GeForce GTX 1080 GPU. By comparison,
GAS [27] takes about 6.7 days using a single TitanXP GPU.

C. Effectiveness of the HAS Strategy and the ADMFF Module

We propose the HAS method to search the cells that com-
pose the feature fusion module, namely the ADMFF module.
To illustrate the effectiveness of the HAS strategy and the
ADMFF module, extensive ablation studies are conducted.

Firstly, for the HAS strategy, different search strategies are
performed: a) stacking network by one shared cell (traditional
shared); b) stacking network by independent cells between
layers (HAS). These two search strategies are tested on the
LoveDA dataset and the CityScapes dataset, and the semantic
segmentation results are shown in Table III.

The results reported in Table III are the average values of
three replicate experiments. As observed in Table III, HAS
surpasses the traditional shared method on both the LoveDA
and the CityScapes datasets. The network built using our
searched cell structure achieves an impressive performance
of 54.5% and 73.9% mIoU on the LoveDA dataset and the
CityScapes validation set respectively.

Fig. 4 shows one of the best cell architectures searched
by the proposed HAS method. As can be seen, different
layers tend to choose various operations, which shows the
effectiveness of our hierarchical shared idea. Furthermore,
pooling operations are favored in the feature aggregation stage.
As always, dilated convolutions play an important role in

X1 X2

X3

Y

skip_connection 3x3 conv

3x3 dconv(dilation=2)

X1 X2

X3

Y

3x3 dconv(dilation=8)
3x3 dconv(dilation=8)

3x3 avg pooling

X1 X2

X3

Y

3x3 max pooling
3x3 dconv(dilation=8)

3x3 avg pooling

top cell middle cell bottom cell

Fig. 4: One of the best cell architectures we have found through mul-
tiple searches. conv: separable convolution, dconv: dilated separable
convolution.

TABLE IV: Experimental results on the LoveDA, Potsdam, and
CityScapes validation set using different network backbones and the
proposed ADMFF module. The mark + represents BiSeNet using
ResNet18 as its backbone. DFANetA and DFANetB are two versions
of DFANet with different numbers of channels.

Dataset Method w/o ADMFF w ADMFF

LoveDA BiSeNet[9] 47.0 49.7
BiseNetv2 [16] 49.2 50.9

Potsdam BiSeNet[9] 81.7 83.9
BiseNetv2 [16] 82.3 83.8

CityScapes

BiSeNet[9] 69.0 71.3
BiSeNet+[9] 74.8 75.9

DFANetA[15] 71.3 71.9
DFANetB[15] 67.1 68.3

semantic segmentation. In the face of that feature maps have
various resolutions, dilated convolution tends to choose diverse
dilation rates.

Furthermore, to validate the effectiveness of the proposed
feature aggregation module, namely the ADMFF module, we
adopt the ADMFF module to replace the relevant part of some
existing models. Specifically, the backbones of existing models
and the proposed ADMFF module are adopted to form new
networks. For the LoveDA and Potsdam datasets, BiseNet [9]
and BiseNetv2 [16] are employed. For CityScapes dataset,
BiseNet [9] and DFANet [15] are adopted. The results are
shown in Table IV.

3×3 
conv

1×1 
conv

(H×W×C ) (H×W×C ) (SH×SW×N )

UpsampleBN Relu

Fig. 5: The design of the segmentation head. H × W × C means the
size of the feature maps, S represents the scale ratio of upsampling,
and N denotes the final output channel number.

As shown in Table IV, the networks incorporating the
backbone of existing methods and the proposed ADMFF
module outperform the original network. It can prove the
effectiveness of the ADMFF module.
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TABLE V: Comparison results with other lightweight networks on the LoveDA dataset. Network-L is searched on the LoveDA dataset. The
speed is measured using a single GeForce RTX 3090 GPU card with a 1024×1024 input.

Method Background Building Road Water. Barren Forest Agriculture mIoU Speed
PSPNet [54] 44.4 52.1 53.5 76.5 9.7 44.1 57.9 48.3 52.2

DeepLabV3+ [55] 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6 53.7
SemanticFPN [56] 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2 52.7

FarSeg [57] 43.1 51.5 53.9 76.6 9.8 43.3 58.9 48.2 47.8
FactSeg [58] 42.6 53.6 52.8 76.9 16.2 42.9 57.5 48.9 46.7
BANet [59] 43.7 51.5 51.1 76.9 16.6 44.9 62.5 49.6 11.5

TransUNet [60] 43.0 56.1 53.7 78.0 9.3 44.9 56.9 48.9 13.4
Segmenter [61] 38.0 50.7 48.7 77.4 13.3 43.5 58.2 47.1 14.7

SwinUperNet [62] 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.0 19.5
UNetFormer [19] 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4 115.3

PIDNet [63] 47.3 57.9 55.6 80.2 19.8 47.1 64.2 53.6 49.8
FastICENet [64] 44.5 59.1 54.2 80.5 18.2 48.0 61.7 52.3 92.2

Ours( Network-L) 49.8 60.7 56.4 80.8 22.1 48.3 65.0 54.5 132.7
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Fig. 6: The trade-off between accuracy and inference speed on the
LoveDA dataset. The inference speed is estimated using PyTorch on
a single RTX 3090.

D. Semantic Segmentation Results

To illustrate the final performance of the network we
searched, we retrain and test the searched network on the
LoveDA, Potsdam, and Vaihingen datasets. In the retraining
stage, the training set is no longer split, and all images
are adopted to optimize the network parameters until the
model converges. For data augmentation, input images are
randomly flipped horizontally, scaled, and cropped to a fixed
size. Besides, to raise the training precision, we add the
segmentation head illustrated as Fig. 5 to both the 3rd and
5th layers of the network backbone. The loss is computed by
combining the outputs of these two segmentation heads with
the network’s final output. To further verify the effectiveness
of the proposed method, we also conduct experiments on two
street view image datasets: CityScapes and CamVid.

1) LoveDA: Experimental results are conducted on the
LoveDA dataset. During training, the input images are cropped
into 512×512 patches. The training process consists of 100
epochs. The speed is measured with a 1024×1024 input
using the PyTorch programming framework on the same
platform, which includes a single GeForce RTX 3090 GPU
card, PyTorch 1.12, CUDA 11.3, cuDNN 8.3.2 and Linux
Conda environment. No acceleration tools are used during the
speed testing of the models. The comparison results with other
lightweight models are shown in Table V and Fig. 6.

The proposed method obtains 132.7 FPS and 54.5% mIoU,
achieving the state-of-the-art trade-off between performance
and speed for real-time semantic segmentation of remote
sensing images. Among previous works, PIDNet [63] is a
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Fig. 7: The trade-off between accuracy and inference speed on the
Potsdam dataset. The inference speed is estimated using PyTorch on
a single RTX 3090.

promising model, and our method surpasses it by 0.9% mIoU.
2) Potsdam: Experimental results are conducted on the

Potsdam dataset. The settings are the same as the LoveDA
dataset during the training process. The comparison results
with other lightweight models are shown in Table VI and Fig.7.

The proposed method obtains 132.7 FPS and 87.8% mIoU,
achieving the state-of-the-art trade-off between performance
and speed for real-time semantic segmentation of remote
sensing images. Among previous works, UNetFormer [19] is
a promising model, and our method surpasses it by 1% mIoU.
Compared with DANet [33], ShelfNet [65], and SwiftNet [14],
although our FPS is slightly lower, the proposed method has
a greater advantage in accuracy.

3) Vaihingen: Experimental results are also conducted on
the Vaihingen dataset, which is also widely used in remote
sensing image segmentation tasks. The other details are the
same as the LoveDA dataset. The comparison results with
other lightweight networks are shown in Table VII and Fig. 8.

Our proposed method achieves the best trade-off between
accuracy and speed. Compared with UNetFormer [19], our
method has great advantages in both speed and accuracy.
Compared with PSPNet [54], DANet [33], ShelfNet [65], and
SwiftNet [14], our method has a slightly slower speed, but we
have a great advantage in accuracy.

Extensive experiments demonstrate that the proposed
method has a better trade-off between speed and accuracy for
real-time semantic segmentation of remote sensing images. We
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TABLE VI: Comparison results with other lightweight networks on the Potsdam dataset. The speed is measured using a single GeForce
RTX 3090 GPU card with a 1024×1024 input.

Method Imp. surf. Building Low veg. Tree Car mIoU (%) FPS
DABNet [7] 89.9 93.2 83.6 82.3 92.6 79.6 123.4
BiSeNet [9] 90.2 94.6 85.5 86.2 92.7 81.7 121.9

BiSeNetv2 [16] 91.3 94.3 85.0 85.2 94.1 82.3 40.3
DANet [33] 91.0 95.6 86.1 87.6 84.3 80.3 189.4
FANet [66] 92.0 96.1 86.0 87.8 94.5 84.2 94.9
EaNet [67] 92.0 95.7 84.3 85.7 95.1 83.4 84.8

ShelfNet [65] 92.5 95.8 86.6 87.1 94.6 84.4 141.1
DSANet [18] 83.0 89.5 71.9 74.3 77.3 79.2 120.7

MAResU-Net [68] 91.4 95.6 85.8 86.6 93.3 83.9 54.3
SwiftNet [14] 91.8 95.9 85.7 86.8 94.5 83.8 138.7
ABCNet [17] 93.5 96.9 87.9 89.1 95.8 86.5 102.2

UNetFormer [19] 93.6 97.2 87.7 88.9 96.5 86.8 115.6
PIDNet [63] 92.6 96.9 89.0 89.2 96.3 86.9 49.8

FastICENet [64] 93.0 96.8 88.2 88.9 96.0 85.9 92.2
Ours( Network-L) 94.6 96.2 88.4 90.3 95.8 87.8 132.7

TABLE VII: Comparison results with other lightweight networks on the Vaihingen dataset. The speed is measured using a single GeForce
RTX 3090 GPU card with a 1024×1024 input.

Method Imp. surf. Building Low veg. Tree Car mIoU (%) FPS
DABNet [7] 87.8 88.8 74.3 84.9 60.2 70.2 123.4
BiSeNet [9] 89.1 91.3 80.9 86.9 73.1 75.8 121.9
PSPNet [54] 89.0 93.2 81.5 87.7 43.9 68.6 145.3
DANet [33] 90.0 93.9 82.2 87.3 44.5 69.4 189.4
FANet [66] 90.7 93.8 82.6 88.6 71.6 75.6 94.9
EaNet [67] 91.7 94.5 83.1 89.2 80.0 78.7 84.8

ShelfNet [65] 91.8 94.6 83.8 89.3 77.9 78.3 141.1
MAResU-Net [68] 92.0 95.0 83.7 89.3 78.3 78.6 54.3

SwiftNet [14] 92.2 94.8 84.1 89.3 81.2 79.6 138.7
ABCNet [17] 92.7 95.2 84.5 89.7 85.3 81.3 102.2
DSANet [18] 79.5 86.0 63.9 73.6 58.4 72.3 120.7

UNetFormer [19] 92.7 95.3 84.9 90.6 88.5 82.7 115.6
PIDNet [63] 92.3 95.5 85.4 89.9 89.4 83.0 49.8

FastICENet [64] 92.5 94.8 85.1 88.0 87.6 81.5 92.2
Ours( Network-L) 93.4 94.5 86.1 90.7 89.6 84.1 132.7
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Fig. 8: The trade-off between accuracy and inference speed on the
Vaihingen dataset. The inference speed is estimated using PyTorch
on a single RTX 3090.

attribute this to three main reasons. Firstly, the feature fusion
module, namely the ADMFF module obtained by HAS, is
effective. Since we introduce NAS to automatically design the
feature fusion module and the search process is conducted on
a large-scale remote sensing dataset, HAS can find a superior
architecture in the search space than the modules of artificial
design, which is demonstrated in Table II - Table IV. Secondly,
we make improvements on the basis of the traditional NAS
methods, as shown in Table III, our hierarchical shared search
method significantly improves the performance of the network.
Thirdly, a lightweight backbone and a cell structure with only

three operations are designed to improve the model’s speed,
which is shown in Table V - Table VII. So the proposed
method achieves better performance than these baseline meth-
ods.

4) CityScapes: Experimental results are also conducted on
two street view datasets, namely the CityScapes dataset and
the CamVid dataset. In the CityScapes dataset, to ensure
consistency with most comparison methods, the input images
are resized to 512×1024 and 769 × 1537 pixels respectively.
The SGD optimizer is applied to train the model with a
momentum of 0.9. The learning rate is set the same as in the
search stage. Besides, the model is trained for 150K iterations
for the CityScapes dataset. We conduct our experiments using
the PyTorch programming framework and test the speed of
the models on the same platform, which includes a single
GTX1080Ti GPU card, PyTorch 1.8, CUDA 10.1, cuDNN
7.6.3 and Linux Conda environment. No acceleration tools are
used during the speed testing of the models.

The network searched by the proposed method is evalu-
ated on the CityScapes validation and test set. As shown
in Table VIII, for large-size models, one can see that using
large-size models has significantly improved segmentation
results. Nonetheless, these models exhibit high computational
complexity, resulting in slower operation speeds, which are
unsuitable for intelligent terminal hardware that demands high
real-time capabilities. For medium-size models, compared with
SwiftNet [14], although our model is lower than them in
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TABLE VIII: Comparison results on the CityScapes validation and test set. ”#FPS” represents that the speed of segmentation models is
remeasured on a single GTX 1080Ti without any acceleration tools. ”+” denotes BiSeNet using ResNet18 as its backbone. ”∗” represents
using both fine and coarse data for training.

Architecture Input size Params(M) mIoU(%) GPU FPS #FPS Method
val test

Large Size

PSPNet [54] 713×713 250.8 - 81.2 - - 0.8 Manual
SETR-PUP [69] 768×768 318.3 82.2 81.6 - - 0.7 Manual

BiSeNet+ [9] 768×1536 49.0 74.8 74.7 GTX 1080Ti 65.5 64.3 Manual
DANet [33] 1024×1024 66.6 81.5 81.5 - - 4.1 Manual
CCNet [70] 1024×1024 66.5 81.3 81.4 - - 4.5 Manual
PIDNet [63] 1024×2048 36.9 80.9 80.6 RTX 3090 31.1 14.8 Manual

Lawin Transformer [71] 1024×1024 - - 84.4 Tesla V100 - - Manual
SegFormer [72] 1024×2048 84.7 - 84.0 Tesla V100 2.5 - Manual

Medium Size

DSANet[35] 512×1024 11.9 79.8 71.4 GTX 1080Ti 34.1 34.9 Manual
FPANet-A [73] 512×1024 11.61 - 72.0 RTX 2080Ti 127 - Manual

BiSeNet [9] 768×1536 5.8 69.0 68.4 GTX 1080Ti 105.8 104.2 Manual
SwiftNet [14] 1024×2048 11.8 75.4 75.5 GTX 1080Ti 39.9 39.5 Manual
DFANet [15] 1024×1024 7.8 - 71.3 GTX TITAN X 100 94 Manual
ICNet [13] 1024×2048 26.5 - 69.5 GTX TITAN X 30.3 28.7 Manual

Small Size

BiSeNetv2 [16] 512×1024 3.4 73.4 72.6 GTX 1080Ti 156 154.6 Manual
DFFNet [74] 512×1024 1.9 - 71.0 GTX 1080Ti 62.5 63.0 Manual

SGCPNet [11] 512×1024 0.61 - 69.5 GTX 1080Ti 178.5 177.7 Manual
JPANet-G [75] 512×1024 3.49 - 71.62 GTX 1080Ti 109.9 111.0 Manual

FBSNet[76] 512×1024 0.62 - 70.9 GTX 2080Ti 90 66.3 Manual
ESPNet [6] 512×1024 0.36 - 60.3 GTX TITAN 112.9 - Manual
ENet [12] 512×1024 0.36 - 58.3 GTX TITAN X 76.9 - Manual

LBNet [77] 512×1024 0.76 - 69.6 - 70 - Manual
Fast-SCNN [8] 1024×2048 1.11 68.6 68.0 GTX TITAN XP 123.5 - Manual

RCNet [78] 1024×2048 1.96 72.49 - Tesla V100 59.2 - Manual
CAS [49] 768×1536 2.2 71.6 70.5 GTX TITAN XP 108.0 - NAS

CAS* [49] 768×1536 2.2 72.5 71.3 GTX TITAN XP 108.0 - NAS
GAS [27] 769×1537 2.18 - 71.8 GTX TITAN XP 108.4 - NAS

More FasterSeg[50] 1024×2048 3.09 71.5 69.2 GTX TITAN XP 164.3 - NAS
Ours( Network-C) 512×1024 4.07 73.6 72.6 GTX 1080Ti 164.0 164.0 NAS
Ours( Network-C) 769×1537 4.07 73.9 72.8 GTX 1080Ti 116.0 116.0 NAS

accuracy, it has a great advantage in speed. For small-size
models, our method reports 164.0 FPS and 72.6% mIoU on
the test set using only fine data and without any evaluation
tricks, which achieves the state-of-the-art trade-off between
the performance and the speed.

Compared with other NAS methods such as CAS [49],
GAS [27], and More FasterSeg [50], our model achieves a
significant improvement in both accuracy and speed. It is
worth noting that More FasterSeg [50] uses TensorRT for
acceleration, while our method does not employ any accel-
eration tools. To provide a more objective comparison with
other methods, we also present the trade-off between speed
and accuracy in Fig. 9. It can be observed that our method
achieves a superior balance between speed and accuracy.

5) CamVid: The network searched on CityScapes is also
transferred to CamVid directly to demonstrate the transferabil-
ity of the searched model. The input size is 720 × 960 pixels
and other settings are the same as above. The other details are
the same as the Cityscapes dataset. The comparison results
with other methods are shown in Table IX and Fig. 10.

Our model achieves 72.3% mIoU with 186.4 FPS, which
demonstrates the superior performance of our model. Com-
pared with SegNet [29], ENet [12], DFANet [15], ICNet [13],
BiSeNet [9], DFFNet [74], RGPNet[79], FBSNet[76], CAS
[49], and GAS [27], the proposed model achieves great advan-
tages according to both speed and accuracy. Compared with
BiSeNetV2 [16], the accuracy of the proposed model drops
slightly, only 0.1%, but the proposed model achieves a higher
speed. Although our method is slower than SGCPNet [11] and
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Fig. 9: The trade-off between accuracy and inference speed on the
CityScapes dataset. The inference speed is measured using PyTorch
on a single GTX 1080Ti.

JPANet-G [75], the proposed method has a huge advantage
in accuracy. Overall, our method achieves a better trade-off
between speed and accuracy.

E. Visualization

The visualization of the segmentation results of the pro-
posed model on the Potsdam dataset and CityScapes validation
set is shown in Fig. 11 and Fig. 12.

As shown in Fig. 11, the segmentation of our method is
better than UNetFormer [19], which is the most promising
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Fig. 10: The trade-off between accuracy and inference speed on the
CamVid dataset. The inference speed is estimated using PyTorch on
a single GTX 1080Ti.

TABLE IX: Results on the CamVid test set with a resolution 720 ×
960. ”#FPS” represents that the speed of segmentation models is
remeasured on a single GTX 1080Ti without any acceleration tools.

Architecture mIoU(%) GPU FPS #FPS Method

SegNet [29] 55.6 GTX TITAN 29.4 - Manual
ENet [12] 51.3 GTX TITAN X 76.9 - Manual

DFANet [15] 64.7 GTX TITAN X 120.0 113.1 Manual
ICNet [13] 67.1 GTX TITAN X 34.5 33.0 Manual

RGPNet[79] 69.2 NVIDIA TITAN V 68.2 - Manual
BiSeNet [9] 65.6 GTX 1080Ti 175.0 174.7 Manual

BiSeNetV2 [16] 72.4 GTX 1080Ti 124.5 123.9 Manual
DFFNet [74] 64.7 GTX 1080Ti 62.5 63.2 Manual

SGCPNet [11] 69.0 GTX 1080Ti 278.4 269.6 Manual
JPANet-G [75] 67.5 GTX 1080Ti 294.0 282.0 Manual
CIDNet [80] 71.3 GTX 1080Ti 79.0 79.6 Manual

FPANet-A [73] 68.6 RTX 2080Ti 101.0 - Manual
RELAXNet [81] 71.2 RTX 2080Ti 79.0 - Manual

LETNet [82] 70.5 RTX 3090 200.0 128.5 Manual

CAS [49] 71.2 GTX TITAN XP 16.09 - NAS
GAS [27] 71.9 GTX TITAN XP 153.1 - NAS

Ours (Network-C) 72.3 GTX 1080Ti 186.4 186.4 NAS

network in previous work. For example, in the red box
of the first row, trees are misclassified as background by
UNetFormer, and in the red box of the second row, roads
are misclassified as background by UNetFormer. As shown in
Fig. 12, the segmentation effect of our model is better than
BiseNetV2 [16] and DFANet [15] in detail, especially in the
edge parts of roads, persons, and trees. In the second column,
we can see that our model successfully distinguishes cars and
trucks. It also has a relatively precise segmentation effect for
objects with a small number of training samples, such as the
fence in the third column.

V. CONCLUSION

In this paper, we concentrate on adopting neural network
architecture search (NAS) to find an optimal real-time seman-
tic segmentation model. Most NAS methods generally search
and share one or two cells in the entire network. We think it is
more reasonable for the feature maps with different resolutions
to be processed by the network blocks with diverse structures.

Fig. 11: Results of the proposed model on Potsdam dataset (Image
ID 3 14 and Image ID 2 13).

 (a)

  (b)

  (c)

  (d)

  (e)

Fig. 12: Results of the proposed model on CityScapes validation set.
(a) is input images, and (b) is ground truth. (c), (d), (e) display the
outputs of our HAS model, BiseNetV2, and DFANet.

Therefore, a hierarchical shared search strategy is proposed,
in which only the network blocks on the same layer share the
cell with the same structure. Existing semantic segmentation
methods have achieved great progress in feature extraction,
and recently most of them have focused on effectively fusing
the features from various layers to increase accuracy. Because
of these, a real-time semantic segmentation network is pro-
posed, consisting of a lightweight backbone for multilevel
feature extraction and a module for feature aggregation. The
proposed hierarchical shared search strategy is adopted to
find an optimal feature aggregation module. The lightweight
backbone is carefully designed using as little computing cost
as possible and takes advantage of the latest excellent semantic
segmentation network. With comparative experiments, our
method shows better performance than traditional searching
methods. Finally, experimental results on five datasets show
that the searched optimal model obtains the state-of-the-art
trade-off between accuracy and speed.

Limited by the memory of the GPU, our search space only
contains the structure of separate cells. The connection mode
between cells is artificially fixed. In the future, we plan to
expand our search space on the basis of this article. We will
no longer only search the operation types inside cells but
consider bringing the connection mode between cells into the
search scope to search for a more flexible network structure
with better performance. In addition, designing a more general
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network-level search space is also a problem worth exploring.
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