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Abstract— Detecting changes in heterogeneous images without
the supervision of changed label is a challenging yet critical
task for quick responding natural disaster relief. Nevertheless,
most of available unsupervised heterogeneous change detection
(CD) methods strong rely on the quality of pseudo-labels, and
they suffer from performance degradation, even irreversible
model collapse, when encounter the low-quality pseudo-labels,
leading to unreliable detection results. In order to improve the
reliability of unsupervised heterogeneous CD, in this article,
we propose a novel CD paradigm based on sample synthesis
and knowledge transfer. We address the issue of label reliability
by artificially creating a changed region and assigning labels
rather than constructing pseudo-labels. These constructed labels
guide the network in automatically learning the correspondence
between heterogeneous images, confirming the reliability of
changed regions. Moreover, an augmentation with synthetic
samples on real samples makes it possible to generate more
transferable samples while reducing the domain gap coarsely.
A dual-branch joint training with feature contrastive learning is
further developed to transfer the knowledge of changes from the
synthetic sample domain to real sample domain. Experimental
results on five public datasets demonstrate that our proposed
method has superior performance when compared with avail-
able state-of-the-art (SOTA) methods. Our code is available at
https://github.com/zhangqiiii/SS-KT.

Index Terms— Change detection (CD), heterogeneous, knowl-
edge transfer, sample synthesis.

Manuscript received 16 November 2023; revised 31 January 2024 and
18 March 2024; accepted 25 March 2024. Date of publication 27 March
2024; date of current version 8 April 2024. This work was supported in
part by the National Natural Science Foundation of China (NFSC) under
Grant 62201467 and Grant 62101453, in part by the Guangdong Basic and
Applied Basic Research Foundation under Grant 2021A1515110544, in part
by the Project funded by China Postdoctoral Science Foundation under Grant
2022TQ0260, in part by the Young Talent Fund of Xi’an Association for
Science and Technology under Grant 959202313088, in part by the Natural
Science Basic Research Program of Shaanxi under Grant 2024JC-YBQN-0719
and Grant 2022JC-DW-08, and in part by the Natural Science Foundation of
NingBo under Grant 2023J262. (Corresponding author: Lingyan Ran.)

Yinghui Xing is with the Shaanxi Provincial Key Laboratory of Speech and
Image Information Processing, and the National Engineering Laboratory for
Integrated Aerospace-GroundOcean Big Data Application Technology, School
of Computer Science, Northwestern Polytechnical University, Xi’an 710072,
China, and also with the Research and Development Institute, Northwestern
Polytechnical University in Shenzhen, Shenzhen 518057, China.

Qi Zhang, Lingyan Ran, Xiuwei Zhang, Hanlin Yin, and Yanning Zhang
are with the Shaanxi Provincial Key Laboratory of Speech and Image
Information Processing, and the National Engineering Laboratory for Inte-
grated Aerospace-Ground-Ocean Big Data Application Technology, School
of Computer Science, Northwestern Polytechnical University, Xi’an 710072,
China (e-mail: xyh_7491@nwpu.edu.cn).

Digital Object Identifier 10.1109/TGRS.2024.3382474

I. INTRODUCTION

REMOTE sensing image change detection (CD) is of
significant importance in monitoring human activities

and natural resources [1], such as ecological environment mon-
itoring [2], [3], urban development planning [4], and disaster
rescue and assessment [5], [6]. It involves comparing remote
sensing images of the same location captured at different times
in order to identify changes.

With the continuous progress of remote sensing technology,
an increasing number of satellites have been launched, which
provide diverse remote sensing images, thus facilitating the
remote sensing interpretations via multisource images [7], [8],
[9]. In the field of CD, heterogeneous CD [10], [11], [12]
allows the utilization of images acquired from any sensor to
detect changes. Due to the limited spatial resolution, accurately
labeling remote sensing data is essentially labor-intensive [13],
and the heterogeneity also raises the difficulties of labeling
samples, especially for SAR images that require extensive
extra expert knowledge. Therefore, most of available hetero-
geneous CD methods are based on unsupervised learning [14].
Unsupervised heterogeneous CD technology does not require a
large number of labeled images, demonstrating great potential
in practice.

The challenges of unsupervised heterogeneous CD are two
folds. The first one is unquestionable heterogeneity. Due
to the imaging difference, heterogeneous images are visu-
ally unique for the same geographical area [15], bringing
about interference for models to clearly discriminate the
truly changed regions. To improve the discrimination abil-
ity, Touati et al. [16] proposed to estimate the pixel-pairwise
distributions in a Bayesian framework. Liu et al. [17] trans-
formed the heterogeneous images into a common space
where images share the same statistical properties. The sec-
ond challenge for unsupervised heterogeneous CD lies in
ambiguous prior. It is difficult for models to accurately learn
target changes without label supervision. Therefore, most of
researchers first train the models several iterations to obtain
an initial change map, also known as pseudo-labels, and then
use these pseudo-labels to guide the model training [18], [19].
Though effective, the reliability of them is skeptical. Since
the detected difference between bitemporal images may come
from different imaging mechanism, dissimilar resolutions,
distinct appearance, as well as target changes, and the models
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Fig. 1. Overview of the proposed approach, which mainly contains sample
synthesis process, a dual-branch joint learning process, and a CD network
with feature contrast constraint.

cannot differentiate them, which possibly leads to irreversible
false predictions. Some advanced CD methods focus on edge
integrity and internal holes phenomenon [20], and improve
detection accuracy through sample balance strategies [21].
However, these designs depend on accurate label information.
To cope with above problems, there are some CD methods
based on sample generation. Zheng et al. [22] utilized an
annotated building extraction dataset to synthesize bitempo-
ral images for training. It bypassed the manual annotation
process of pixel-wise change masks from bitemporal images,
but required a large number of building extraction labels,
which is also difficult to obtain [23]. Aiming at the task
of building CD, Chen et al. [24] proposed an instance-level
change augmentation strategy to generate bitemporal images
that contain changes of diverse buildings, and leveraged the
generative adversarial training to detect changes. Similarly,
Sun et al. [23] designed a pseudo-bitemporal data generator to
generate a large number of pseudo-bitemporal images with CD
labels. All of them concentrate on the homogeneous CD task,
and they generate data for the changes of building objects.
Owing to the heterogeneity and the diverse changing objects,
these methods cannot be directly taken into the heterogeneous
CD task.

To make the model discriminate between real changes
and heterogeneous differences. In this article, we design a
simple changed sample synthesis strategy to simulate the
changes. Specifically, the cut–paste operation [25] is utilized
to synthesize changed samples. We first construct a bank
of pasting pieces, and then select an appropriate region to
paste a piece from the bank. The changed labels of synthetic
samples are obtained during this process. The introduction of
synthetic samples compels the CD model to be aware of the
real changes rather than appearance differences produced by
different imaging mechanism. Since the process of sample syn-
thesis only considers regular shapes with distinct boundaries,
which is inconsistent with realistic change scenes, we further
propose a dual-branch joint training to facilitate knowledge
transfer from synthesis samples to real samples. As illustrated
in Fig. 1, the scheme contains a synthetic-sample branch and
a real-sample branch, where the synthetic samples are first
used to augment real samples to coarsely reduce domain gap.
And the dual-branch samples pass through a CD network
simultaneously to calculate the feature contrastive loss. The
contrastive loss is used to constrain the feature similarity
between two branches, aiming to improve the model’s domain
generalization ability and feature discrimination ability.

Through the cut–paste of simple shapes like circle and
rectangle, the model can obtain a direct prompt to recognize
real changes. And the dual-branch joint training reduces the
domain gap between synthetic domain and real domain, which
further improves the reliability of detection results.

The main contributions of this article are as follows.
1) We develop a novel unsupervised CD approach based on

sample synthesis. The proposed method constrains the
model to learn changes and suppresses the interference
of other factors by a naive and direct sample synthesis
strategy.

2) A dual-branch joint training strategy is designed, which
enables the synthetic samples to guide the learning
process of real samples through knowledge transfer.

3) Through the designed architecture, a feature con-
trastive mechanism is introduced, greatly improving
the detection performance. The distinction between
classes enhances the discrimination of features, while the
similarity between two branches facilitates the extrac-
tion of change-aware features, i.e., domain-agnostic
information.

II. RELATED WORKS

A. Heterogeneous Change Detection

Heterogeneous CD is a hot topic in the field of remote
sensing. Earlier methods, like statistical models [26], [27],
energy models [28], [29], and evidence theory [30], are on
the basis of the assumption that heterogeneous images share
similar structure features for the same ground targets [10].
In recent years, three groups of methods have gradually
emerged: feature alignment-based, image translation-based,
and image structural similarity-based. Feature alignment-based
methods project heterogeneous images to higher-dimensional
space, and then try to find some invariant relationships
between them. Liu et al. [14] proposed an asymmetrically
coupled network to project two images into a comparable
feature space. Li et al. [31] applied the self-paced learn-
ing theory to systematically improve the projection distance
between heterogeneous images. Xing et al. [18] achieved
progressive alignment of bitemporal image features by refining
the network’s projection results. Similarly, PRBCD [32] and
SGAE [33] involved a coarse prediction module and an
iterative refining module to extract discriminative features and
then generate a refined change map by change map optimizers.
Wei et al. [34] utilized the Transformer model to develop an
interactive mapping encoder, enhancing performance by lever-
aging the global modeling capability of Transformer. However,
excavating the correspondence between heterogeneous images
is difficult and unstable, which limits the performance of
these methods. Image translation-based methods try to obtain
homogeneous images through style transformation or regres-
sion estimation. HPT [17] achieved mutual image translation
through the pixel-level regression algorithm. Nonetheless, the
detection accuracy deeply relies on the quality of translated
images. cGAN [35] utilized a conditional GAN to trans-
late images and subsequently improved the results using an
approximation network. Gong et al. [36] proposed a cou-
pling translation network [36] based on CycleGAN with

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on April 10,2024 at 17:03:28 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: IMPROVING RELIABILITY OF HETEROGENEOUS CHANGE DETECTION 4405511

Fig. 2. Detailed architecture of the proposed method. In the sample synthesis process, the pasting region is selected from image pairs of bitemporal images
(X1 and X2) and updated change map Y , while the pasted pieces are constructed and selected from single-temporal image. In the dual-branch joint training,
cut-mix is first applied to coarsely reduce the domain gap between synthetic and real samples, and a feature contrastive learning is also used to further facilitate
the knowledge transfer.

a partially shared generator. Though some of them [37],
[38] have successfully achieved high-quality image translation
through the utilization of a well-designed loss function, the
direct comparison in the image domain is easily disturbed by
noises. Methods based on image structural similarity require
to manually extract features to describe the structure of the
image. The image structural similarity is usually measured
by graph structure. NLPG [39] and INLPG [40] established
the similarity between each target patch and other patches.
They evaluate the similarity of graph structure by aligning
graph relationships to the same phase in order to assess the
changes in the target. Similarly, Sun et al. [41] designed
an iterative graph structure model, and the change graph
is obtained through conditional random field segmentation.
However, in general, manually extracted features are inflexible
and not robust enough to apply to different datasets.

B. Data Synthesis Through Cut–Paste

In many real-world scenarios, obtaining real task-related
data can be expensive or even impossible [42], [43]. Synthe-
sizing data is a frequently utilized way in model training [44],
[45], [46]. There are various data synthesis methods [47],
[48], [49], [50], [51]. Among them, cut–paste [25], a data
augmentation method, is widely used in deep learning to
improve the generalization ability of models by increas-
ing the amount of data samples. At the same time, it is
also utilized to synthesize data in various computer vision
tasks. Wang et al. [52] proposed an unsupervised pre-training
method for semantic segmentation, which pasted the same
image onto different backgrounds, making the model learn
semantics of different regions by modeling the similarity of
foreground features. Dwibedi et al. [53] synthesized training
data by automatically cutting object instances and then pasting
them onto a random background. In [54], different anomaly
regions were generated on perfect images by cut–paste, which
enabled the model to detect unknown anomaly patterns with-
out anomaly data. Cut–paste has a natural correlation with

CD task, because the cut patches is essential a changed
region. Therefore, it is utilized to directly synthesize training
data in some semi-supervised and unsupervised CD methods.
Chen et al. [24] synthesized new data by cutting and pasting
instance-level labels of a single phase to train the detector.
Based on cut–paste, Seo et al. [55] made it possible to train a
CD model on two spatially unrelated images. However, both
of them aim to generate realistic synthetic datasets, which
is laborious and also requires external datasets or labels.
In this article, we simulate the changed regions by randomly
generating some simple shapes to cut and paste.

III. METHODOLOGY

A. Overview

In this article, we improve the reliability of heterogeneous
CD by first synthesizing changed samples and then reduc-
ing domain gap between synthetic and real samples. The
detailed architecture is illustrated in Fig. 2, where we have
bitemporal images, including the pre-event image X1 and the
post-event image X2, as well as the prior change map Y that
is zero-initialized and can be updated during the iteration. Our
sample synthesis depends only on single-temporal images, i.e.,
cutting and pasting are conducted on the same temporal phase
of images. Specifically, we first use the clustering method to
obtain a classification (CLS) map from a certain of temporal
phase image, and then construct a bank of pieces with multiple
scales and classes according to the CLS map. At the same time,
image pairs together with updated change map are divided into
patches to form a real sample set, from which we further pick
out the unchanged samples to select regions to be pasted. Note
that the regions can be squares, rectangles, or even cycles,
and CLS map also guides the process of selection. Then,
we randomly choose some pieces to be pasted on the selected
regions from bank of pieces. Since the cut and paste are
executed on the same temporal phase, the synthetic changed
regions are located in the position where we select the regular
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shapes. Therefore, we can obtain the paired synthetic samples
with corresponding changed labels.

Unlike many homogeneous CD methods based on image
generation, we synthesize samples in a naive way, where the
changed regions are constructed with regular shapes, which
is inconsistent with practical scenes. In other words, there
is a large domain gap between synthetic sample set and real
sample set. To reduce the domain gap and realize reasonable
knowledge transfer, we adopt two strategies. The first one
is cut-mix with synthetic samples, and the second one is
dual-branch joint training. We first use cut-mix to augment
real samples. Then, both the synthetic sample set and the
augmented real sample set pass through a CD model to obtain
the change map. This change map is on one hand combined
with pre-event and post-event images to update real sample set,
and on the other hand, it acts as a mask to distinguish changed
and unchanged prototype vectors. These prototype vectors are
considered in feature contrastive learning to further reduce the
domain gap.

B. Sample Synthesis

We use synthetic samples to simulate changed region.
To maintain consistency within the dataset, we select the
pasting pieces and the regions to be pasted on the same
temporal phase image.

1) Construction of Pasting Pieces: It is essential to ensure
that the pasting piece and the pasted region belong to distinct
semantic classes. Therefore, we extract uniform regions as far
as possible to form a bank of pieces. Specifically, the whole
post-event image is first classified into C categories by the
K-means clustering algorithm, and the classification map is
then filtered by a median filter, which confirms the uniformity
within class regions, and also reduces the speckle noises of
SAR images. This process can be formulated as

cls = Median(Cluster(X t )), X t ∈ RH×W (1)

where H and W denote the height and width of the image. X t

can either be pre-event image X1 or post-event image X2.
Since the changed objects always appear in the post-event
phase, we choose pasting pieces within post-event phase
image, i.e., X t = X2. Then, we search for pieces by sliding
three sizes of windows on classification map cls, i.e., small
(S), medium (M), and large (L)

clsw =
{

clssize
i, j

∣∣i, j ∈ (0, s, 2s, . . . , ns), size ∈ (S, M, L)
}

(2)

where s is search stride. After that, we count the number of
pixels belonging to each class, and find the most dominant
class c∗. When the number of pixels belongs to c∗th class in
the window is greater than a predefined threshold, we crop the
window in original post-event image and put it into the c∗th
class of the bank

c∗
= arg max

c

(
countc

(
clssize

i, j

))
, c ∈ (1, 2, . . . , C)

pc∗

=

 X size
t,(i, j),

countc∗∑
countc

> 0.95

Null, otherwise
(3)

where countc(·) is the function to count the number of pixels
belonging to cth class, and pc∗

is a pasting piece with class
c∗. X size

t,(i, j) indicates the selected piece on image X t centered
in the position (i, j). Note that we choose a relatively higher
threshold 0.95 to confirm the uniformity of pieces, and the
model is not sensitive to the threshold. The whole bank of
pieces are expressed as

Bank =
{

pc
k

∣∣c ∈ (1, 2, . . . , C), k ∈ (1, 2, . . . , Nc)
}

(4)

where Nc denotes the number of pasting pieces for class c.
2) Selection of Pasted Regions: Ideally, the selected pasting

piece should be placed in the unchanged regions to keep the
distinctiveness of boundaries between changed and unchanged
regions, or the boundaries between pasting and pasted regions.
Therefore, we divide the pre-event, post-event images, and
the prior change map into patches, and select the unchanged
samples based on a prior change map Y , which indicates
regions likely to be changed or unchanged, and can be updated
by the CD model. Specifically, we consider the patch samples
where the proportion of changed pixels is below 0.01 within
the patch as unchanged samples.

To ensure diversity of synthetic samples, we randomly select
the pasted region’s location, size, and shape in each unchanged
sample. Meanwhile, to mitigate the potential impact of class
inconsistency caused by pasted regions, we only select regions,
whose class consistency measurement is higher than Tpasted as
pasted regions.

3) Construction of Synthetic Samples: After obtaining the
bank of pasting pieces and the pasted regions, we can con-
struct synthetic samples through cut–paste. To further confirm
the distinctiveness of boundaries between pasting and pasted
regions, we first use the mean value x̄ = (1/hw)

∑
xi, j of

pasted region to represent the whole region. And then calculate
the distances between x̄ with C center of clustering to choose
the Top-n farthest categories. Finally, we randomly select one
pasting piece from n classes to paste to the selected region.
After construction of the synthetic samples, the corresponding
change map ys can also be obtained.

C. Dual-Branch Joint Training

Since the synthetic samples have regular changed shapes,
which is inconsistent with practical scenes, we use dual-branch
joint training to reduce the domain gap between synthetic and
real samples. First, real samples are augmented by cut-mix
with synthetic samples to reduce the gap between synthetic
sample set and real sample set. Then the synthetic samples
and augmented real samples pass through the CD network in
parallel to obtain detection results.

As Fig. 2 shows, the CD model contains two encoders and
a decoder, where two encoders extract features of bitemporal
images. Then the difference between extracted bitemporal
features is obtained. These difference features are used on
one hand to pass through the decoder to obtain results, on the
other hand, they are processed by the mask-pooling to acquire
changed and unchanged class prototypes, which are used in
the dual-branch contrastive learning.
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1) Synthetic Sample Branch: The synthetic sample branch
utilizes synthetic samples to make the model learn real changes
and at the same time surpasses the interference of other factors.
In Section III-B3), we merge the prior change information with
that of the pasted region to obtain the labels of the synthetic
samples. During the selection of pasted regions, we select
the unchanged regions as far as possible; however, inevitably,
there are fewer changed pixels. To avoid their negative impact,
we assign a small weight to these changed pixels in the loss
function. Because the initial prior change map is not accurate
and it is updated during training, the value of this weight α

can be gradually increased. The loss function Ls is calculated
by

Ls =

∑
k∈prior

αCE
(

ŷk, ys
k

)
+

∑
k /∈prior

CE
(

ŷk, ys
k

)
(5)

where prior represents the pixels who are not in the pasted
region and labeled as changed in prior change map. CE(·)

indicates the cross-entropy loss. ŷk and ys
k denote the predic-

tion and the synthetic change label of kth pixel.
2) Real Sample Branch: This branch is trained in parallel

with the synthetic sample branch to reinforce the knowledge
learned from synthetic sample branch. And it shares the same
network with synthetic sample branch. We first augment the
real samples by utilizing synthetic samples through cut-mix
augmentation to reduce domain gap and at the same time
obtain more generalized knowledge. Then the sample prior
change map yr is used as pseudo-labels to calculate the
cross-entropy loss Lr

Lr =

∑
k

CE
(

ŷk, yr
k

)
(6)

where yr
k is pseudo-label of the kth pixel in yr .

3) Dual-Branch Contrastive Learning: In order to enhance
the feature discrimination between changed and unchanged
classes, and further reduce the domain gap between synthetic
and real samples, we design the dual-branch contrastive learn-
ing to the output of encoders.

Specifically, we apply mask-pooling to the encoded features
based on the synthetic or pseudo-labels of synthetic or real
sample branches, respectively. This process generates two
prototype vectors for the changed class: vs

c (synthetic) and
vr

c (real), as well as two prototype vectors for the unchanged
class: vs

uc (synthetic) and vr
uc (real). Then, we utilize cosine

similarity D(a, b) = −|a ·b/∥a∥∥b∥| as the distance measure-
ment to establish the following four distance relationships:

dsdissim = D
(
vs

uc, v
s
c

)
, drdissim = D

(
vr

uc, v
r
c

)
(7)

ducsim = −D
(
vs

uc, v
r
uc

)
, dcsim = −D

(
vs

c, v
r
c

)
(8)

where dsdissim and drdissim denote the dissimilarity of changed
and unchanged features in synthetic sample learning and real
sample learning. ducsim represents the similarity of unchanged
features, while dcsim denotes the similarity of changed features.
By minimizing (7), the model can have high discrimination
between changed and unchanged regions. Equations in (8) help
to reduce the domain gap between synthetic and real samples,
constraining the network to extract domain-invariant features.

Fig. 3. Details of the CD network.

We keep these prototype vectors for the changed and
unchanged classes, and update them by taking the mean values
of the new feature vector acquired from each iteration.

4) Total Training Process: The synthetic and real sample
branches are trained simultaneously. At the beginning, the
model trained on the synthetic samples may be unreliable.
In order to prevent the misleading of training on real samples,
we set a weight β for the real sample branch training, and the
weight is increased during training. The total training loss is

L = βL′

r + Ls + dsdissim

L′

r = Lr + drdissim + ducsim + dcsim . (9)

After several training epochs, the bitemporal images are
input into CD model to output the change probability map p1.
This change probability map is binarized to obtain a new
change map, which is then used to update the prior change
map.

D. Model Architecture and Inference Process

As shown in Fig. 3, our CD network is on the basis of a
dual-branch UNet, which contains two encoders and a decoder.
The encoders extract discriminative features of bitemporal
images and the decoder predicts change map from difference
features.

During inference, the CD network directly takes bitemporal
images as inputs to obtain change probability map p1. At the
same time, the changed and unchanged prototype vector are
maintained during training. We preserve these prototypes, and
further calculate the distance between them and the encoder’s
output, to obtain changed map p2 and unchanged map p3.
Finally, p1, p2, and p3 are fused to obtain the final probability
map p

p = λ1 p1 + λ2 p2 +
(
1 − λ1 − λ2

)
(1 − p3). (10)

p is then binarized with threshold 0.5 to obtain the change
map.

IV. EXPERIMENTS

In this section, we first clarify the experimental settings,
then test the proposed method on five public datasets, and
compare it with ten state-of-the-art (SOTA) methods, i.e.,
FPMS [56], NACCL [57], INLPG [57], SCASC [58], IRG-
Mcs [41], SCCN [14], cGAN [35], CAAE [38], PMA [18],
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Fig. 4. CD results of different methods on five datasets. In the confusion map, TP, TN, FP, and FN are represented in white, black, green, and red colors,
respectively. (a) Pre-event. (b) Post-event. (c) GT. (d) SCCN. (e) CAAE. (f) PMA. (g) PRBCD. (h) Ours.

and PRBCD [32]. In addition, optimal hyperparameters are
selected by further experiments.

A. Datasets and Evaluation Metrics

In the experiment, we use five heterogeneous datasets to
verify the effectiveness of our method, including optical RGB,
near-infrared, multispectral, and SAR images. The pre-event,

post-event, and corresponding ground truth of each dataset are
shown in Fig. 4(a)–(c). The details of datasets are described
as follows.

1) Italy dataset consists of a near-infrared image and an
RGB image, which are taken in Sardinia, Italy, where a
lake flooding event occurred. The images have the size
of 412 × 300.
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Algorithm 1 Model Training Process
Input: Bi-temporal images X1, X2, total number of training

epochs N
Output: Change map C M

1: Generate the classification map cls from X2.
2: Construct Bankof Pieces based on cls.
3: while current_epoch ≤ N do
4: Divide (X1, X2, Y ) into patches (x1, x2, y)i .
5: Construct synthetic sample set (x s

1, x s
2, ys)i .

6: Construct real sample set (xr
1, xr

2, yr )i .
7: Training with Eq. (9).
8: Deduce p1 and update CD map.
9: end while

10: Calculate distance map p2 and p3.
11: Fuse p1, p2, p3 and get final change map C M .
12: return Change map C M

2) Yellow River dataset consists of a SAR image and an
optical image. They are captured in Yellow River, China,
and the image size is 291 × 444.

3) Shuguang dataset consists of a SAR image and an RGB
image, captured in Shuguang village, DongYing city,
China. It has the farmland changes to buildings. Images
have the size of 921 × 594.

4) Texas dataset consists of two multispectral images from
different sensors. They are captured in Texas, Amer-
ica, where a forest fire occurred. The size of images
is 808 × 1534.

5) California dataset consists of a multispectral image and
a SAR image. A river flooding occurred during the time
intervals. The size of images is 2000 × 3500, which is
resized to 1000 × 1750 at training.

We use area under the ROC curve (AUC), F1-score, overall
accuracy (OA), and kappa coefficient (κ) to evaluate the
performance of different methods. In the confusion matrix, true
positive (TP) denotes positive samples that are also detected
as positive, and true negative (TN) denotes those negative
samples detected as negative. False positives (FPs) are negative
samples that are detected as positive, and false negatives
(FNs) are those positive samples detected as negative. In the
confusion map of Fig. 4, TP, TN, FP, and FN are represented
in white, black, green, and red colors, respectively.

B. Experimental Settings

In the process of generating classification map, the number
of clustered class C is set to 5. n is used to select the
number of classes farthest from the pasted area, which is set
by experiment to 3. When constructing a synthetic sample,
the threshold Tpasted for the pasted area is set to increase
linearly from 0.80 to 0.85. The sizes of three search windows
for constructing pasting pieces are S = patch_size/8, M =

patch_size/4, and L = patch_size/2, where patch_size is the
patch size of datasets. Since different pairs of images have
different sizes, we use different patch size in our experiment.
Specifically, for Italy, Yellow River, Shuguang, Texas, and
California datasets, the patch size is set to 64, 48, 64, 128,

and 128, respectively. The balanced weights in loss function
are α = 0.2 ∗ e/emax and β = e/emax, where e indicates
current epoch and emax is the total number of epochs.

During training, the batch size is set to 16 and the learning
rate is 2 × 10−3. We use SGD optimizer to update the
parameters. All experiments are conducted on the NVIDIA
GeForce GTX 1080Ti GPU, and the PyTorch framework is
used to construct our model. The prior change map is zero-
initialized, and is updated every five epochs. Our model is
trained totally 100 epochs.

C. Experimental Results

From Table I, we can observe that our proposed method
obtains superior results on most datasets, except for California
dataset. Since the ground objects in California dataset are very
complex, there are many small and scattered change regions,
which leads to a lot of missing detection and our method
only achieves the second-best accuracy. It should be noted
that our proposed method shows impressive performance on
Texas dataset, which has been universally acknowledged to
be a “difficult” dataset [18]. Due to the guidance of synthetic
samples and their “labels,” our method outperforms the com-
parison methods by a large margin in the AUC, F1-score, OA,
and kappa coefficient indices. The standard deviations (s.t.d)
of our method are listed in the last row of Table I.

We also provide detection results of several deep learn-
ing methods in Fig. 4. It can be clearly observed that the
results of our method are significantly superior than those
of other methods. Some of them are prone to small false
detections, presented as green spots in the confusion map.
The typical methods like SCCN and PMA, whose feature
alignment is achieved in pixel-level, cannot pay much attention
to region-level information extraction due to the absence of
reliable changed label-supervision. In addition, those image
translation-based methods, such as CAAE, apply change com-
parisons also in the pixel level without considerations of the
regional correlation. In contrast, our method performs much
better in the nonuniform regions, which we believe is due to
the fact that we consider the consistency within the region
when pasting the changed regions, allowing for the tolerance
of local disunity. The model trained on such synthetic data
can focus on a larger range of features to avoid the small
false detections. In particular, on the Shuguang dataset, other
methods show discontinuities in changed regions, while ours
can recognize the whole region as changed, achieving 10%
better than other methods in the kappa coefficient index.

D. Hyperparameter Analysis

1) Threshold Tpasted in Selection of Pasted Regions: Tpasted
is a very important hyperparameter that largely determines
the rationality and accuracy of synthetic samples. In the
experiment, we set it within an interval, and it is increased
dynamically along with training process. In order to select an
appropriate value, we fix the interval range as 0.05, and make
the interval start from 0.7.

The results are shown in Fig. 5. As can be seen, the
accuracy of all datasets begins to decline after [0.85, 0.90],
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TABLE I
METRICS OF DIFFERENT METHODS

TABLE II
DETECTION ACCURACY (KAPPA COEFFICIENT) UNDER DIFFERENT n

TABLE III
TIME COST (SECONDS) OF DIFFERENT DEEP

LEARNING-BASED METHODS

Fig. 5. Investigation of hyperparameter Tpasted.

and relatively better performances are obtained in [0.80, 0.85].
Therefore, we finally select the range of Tpasted as [0.80,
0.85]. The nearly stable curves also illustrate that the model
is insensitive to this parameter.

2) Number of Selected Categories in Construction of Syn-
thetic Samples (n): The hyperparameter n controls the number
of classes that can be selected in the construction of synthetic
samples. Since the number of classes in the K -means clus-
tering is C = 5, here we investigate optimal value of n by
setting n = {1, 2, 3, 4} respectively. The results are shown
in Table II. It can be seen that when n = 1, the detection
accuracy is generally very low. We think this is due to the
limited combination types of the changed regions. With the
increase of n, the combination types are more diverse and
the detection accuracy is improved and reaches a peak until
n = 3. Therefore, we set n = 3 in our experiment.

3) Fusion Weights in Final Probability Map: The fusion
weights λ1 and λ2 in (10) are also important hyperparameters.
We explore the influence of them through grid search, where
λ1 and λ2 change with a step size of 0.05. The experimental
results are shown in Fig. 6. It can be observed that the
detection accuracy tends to stable when λ1 is above 0.6 with
a relatively small λ2. According to Fig. 6, we finally set λ1 to
0.7 and λ2 to 0.2 for all datasets. In fact, if we carefully adjust
them on each of the dataset, a slightly higher precision can be
obtained. However, in order to confirm the universality of our
model, we use the same hyperparameter setting for all datasets.

E. Time Cost Comparison

We count the time costs of different deep learning-based
methods. Since the processing time is related to the size of
images of each dataset, we also compute the average value of
them. The results are provided in Table III. In order to make
the comparison as fair as possible, we unify the total number of
training epochs to 50, which ensures all methods to be fully
trained. Our method only obtains the third-best in the time
cost comparison, since the construction of synthetic sample
requires a lot of serial computations on the CPU. Nonetheless,
our proposed method also has a relative acceptable time
consumption.

F. Ablation Study

In this section, we conduct experiments to verify the effec-
tiveness of different components of our method. The first
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TABLE IV
ABLATION STUDY

Fig. 6. Investigation of fusion weights λ1 and λ2. (a) Italy. (b) Yellow River. (c) Shuguang. (d) Texas. (e) California.

row in Table IV shows the baseline, where the model is
trained with only synthetic samples. Compared with previous
comparison methods in Table I, baseline already has satis-
factory results in almost all the datasets, which demonstrates
the superiority of our proposed synthetic sample learning
paradigm. By comparing the first and the second rows of
Table IV, we can find that the performance decreases after
adding the real branch, which we think is disturbed by
inaccurate knowledge learned in the early training. Therefore,
some auxiliary measurements are needed to help the model
learn more generalized knowledge. We introduce cut-mix and
find an overall performance improvement especially on the
Texas dataset. We further add the feature contrastive con-
straint, and an increase of accuracy appears, demonstrating
the effectiveness of feature contrastive learning for all the
datasets. The fusion of prototype can boost the results of our
method on Itay, Yellow River, and Texas datasets, but seems
to be useless on Shuguang and California datasets, since we
think this phenomenon appears due to that single changed or
unchanged prototype cannot well model the complex mapping
relation in some cases, leading to inaccurate CDs based on
prototype distance map.

V. CONCLUSION

This article presents a novel unsupervised heterogeneous
CD paradigm based on sample synthesis and knowledge

transfer. To improve the reliability of CD models, we propose
to simulate the real changes by artificially constructing a
synthetic sample set. These synthetic samples are then used
to guide model training, making the model to learn changes
and suppress interference of other factors. In parallel to the
synthetic sample branch, a real sample branch is preserved
to improve the model discrimination capability. Through the
dual-branch joint training with feature contrastive learning,
our model obtains superior performance compared with other
SOTA methods. In this article, we attempt to provide a
possible solution to unsupervised heterogeneous CD on sample
synthesis. The performance gains are obtained even through a
naive generation manner. In the future, we will explore more
advanced image generation methods based on single-temporal
images to release the label-dependency and paired-images-
dependency dilemmas in heterogeneous CD.
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