 Cross-Platform Video Person ReID: A New ⁰⁰¹ ⁰⁰² Benchmark Dataset and Adaptation Approach ⁰⁰²

004 **Paper ID** $\#3918$ 004 004

 Abstract. In this paper, we construct a large-scale benchmark dataset 005 for Ground-to-Aerial Video-based person Re-Identification, named G2A- 006 VReID, which comprises 185,907 images and 5,576 tracklets, featuring 007 2,788 distinct identities. To our knowledge, this is the first dataset for 008 video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has 009 the following characteristics: 1) Drastic view changes; 2) Large number 010 of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference 011 in resolution. Additionally, we propose a new benchmark approach for 012 cross-platform ReID by transforming the cross-platform visual alignment 013 problem into visual-semantic alignment through vision-language model 014 (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter 015 module to adapt image-based foundation model to video ReID tasks, 016 termed VSLA-CLIP. Besides, to further reduce the great discrepancy 017 across the platforms, we also devise the platform-bridge prompts for 018 efficient visual feature alignment. Extensive experiments demonstrate the 019 superiority of the proposed method on all existing video ReID datasets 020 and our proposed G2A-VReID dataset. 021

Keywords: Dataset · Ground-to-Aerial · Person Re-Identification 022

1 Introduction ⁰²³

024 Video-based person Re-Identification (VReID) $[2, 12, 23, 24]$ $[2, 12, 23, 24]$ $[2, 12, 23, 24]$ $[2, 12, 23, 24]$ $[2, 12, 23, 24]$ $[2, 12, 23, 24]$ $[2, 12, 23, 24]$, has been attracting 024 much attention in recent years, as video can provide richer information than ⁰²⁵ single image. Existing research efforts on video-based ReID are mostly based on ⁰²⁶ the data captured from the same platforms, such as ground surveillance cameras. ⁰²⁷ Suppose in this scenario that a suspect has committed a crime in the city where ⁰²⁸ abundant surveillance cameras have been deployed and escaped into the rural ⁰²⁹ areas where there are no deployed ground surveillance cameras in advance. One ⁰³⁰ feasible solution is sending a moving camera with the help of an airbone UAV ⁰³¹ platform. Thus, the technical crux has been turned into cross-platform video- ⁰³² based person ReID in aerial captured videos, with a given query video tracklet ⁰³³ captured by ground cameras. ⁰³⁴

 In this paper, to meet the research need of cross-platform video person ReID, ⁰³⁵ we construct a large-scale benchmark dataset named Ground-to-Aerial Video ⁰³⁶ ReID (G2A-VReID). The G2A-VReID dataset consists of 185,907 images in to- ⁰³⁷ tal, with 5,576 tracklets belonging to 2,788 different person IDs. Each person ⁰³⁸

 ID includes two tracklets captured by the UAV and ground surveillance plat- ⁰³⁹ forms, respectively. There is an average of 33.3 images for each tracklet. The ⁰⁴⁰ scale of G2A-VReID dataset is larger than most existing video-based person ⁰⁴¹ 042 ReID datasets such as MARS $[44]$, iLIDS $[36]$, PRID-2011 [\[15\]](#page-15-2), etc. 042

 To capture the videos of the same person by both the ground surveillance ⁰⁴³ camera and the UAV-mounted camera, we simulate the ground-to-aerial platform ⁰⁴⁴ ReID by fixating a ground surveillance camera at a specific location, while flying ⁰⁴⁵ a DJI consumer UAV nearby to ensure many people can be captured by both ⁰⁴⁶ cameras. The ground camera is set at about 2.0 meters above the ground, and ⁰⁴⁷ the flight altitudes of UAV varies from 20 meters to 60 meters. Additionally, to ⁰⁴⁸ be more realistic, the flight mode is adjusted randomly among hovering, cruising, ⁰⁴⁹ and rotating with diverse view angles which greatly enriches the perspectives of ⁰⁵⁰ the dataset. 051

 Furthermore, the dataset is collected at nine different scenarios, including ⁰⁵² school campuses, subway station entrances, tourist sites, crossroads, etc. As ⁰⁵³ shown in Fig. [1,](#page-4-0) the cross-platform video person ReID task is much more chal- ⁰⁵⁴ lenging than the counterpart in single ground platform, as the tracklets captured ⁰⁵⁵ in the ground to aerial cross-platform scenarios are featured in drastic variations ⁰⁵⁶ of view-points, poses, and resolutions. We have evaluated nine existing video- ⁰⁵⁷ based person ReID algorithms on our newly collected cross-platform dataset. The ⁰⁵⁸ experimental results showed inferior performances compared with those conven- ⁰⁵⁹ tional single-platform datasets. Due to the great challenges of drastic view, pose, ⁰⁶⁰ and resolution changes, it is not easy to align the visual part features between ⁰⁶¹ the cross-platform devices, which is essential in ReID task. ⁰⁶²

 Recently, with the emergence of large-scale pre-trained vision-language mod- ⁰⁶³ els, e.g., CLIP [\[29\]](#page-15-3), a well-aligned visual-semantic space can be obtained through ⁰⁶⁴ cross-modality contrastive learning of large web visual data along with high- ⁰⁶⁵ level language descriptions. Although for the ReID task, there is no language ⁰⁶⁶ descriptions for each person whose identity is just denoted as an index number, ⁰⁶⁷ a set of learnable description tokens can also be introduced to roughly describe ⁰⁶⁸ α ₀₆₉ each ID [\[25\]](#page-15-4). In this paper, we propose to transform the cross-platform visual α ₀₆₉ alignment problem into visual-semantic alignment with the help of the founda- ⁰⁷⁰ tion model CLIP. To be concrete, a two-stage optimization strategy is utilized, ⁰⁷¹ which aims to learn description tokens for each ID in the first stage, and fine- ⁰⁷² tunes the Image Encoder with aligning visual embeddings to semantic features ⁰⁷³ obtained through the learned description token in the second stage. Our exper- ⁰⁷⁴ iments demonstrate that fine-tuning the Image Encoder with the constraint of ⁰⁷⁵ visual-semantic alignment achieves competitive performance. ⁰⁷⁶

 However, there are two obvious drawbacks in adapting image-based pre- ⁰⁷⁷ trained foundation models to video ReID tasks by simply fine-tuning. One is the ⁰⁷⁸ huge training cost with large-scale trainable parameters, and another is that the ⁰⁷⁹ image encoder lacks the capability of modeling inter-frame information. Many ⁰⁸⁰ 081 previous works $[1,3,18]$ $[1,3,18]$ $[1,3,18]$ deem video as a stack of frames with temporal structure, 081 and are devoted to modeling temporal features with well-designed modules. But ⁰⁸² these works ignore the complementarity of frames in a video, which proved to be ⁰⁸³ more effective in ReID task [\[2\]](#page-14-0). Moreover, from the aerial perspective, temporal ⁰⁸⁴ information is limited due to severe self-obstruction. As shown in Tab. [2,](#page-10-0) tempo- ⁰⁸⁵ ral models [\[10,](#page-14-4) [13,](#page-14-5) [18\]](#page-15-5) show inferior performance on G2A-VReID. In this paper, ⁰⁸⁶ we present a new perspective that regards a video clip as a disordered set and ⁰⁸⁷ propose a parameter-efficient Video Set-Level-Adapter (VSLA) module for foun- ⁰⁸⁸ dation modal adaptation. Concretely, VSLA consists of a Cross-Frame Attention ⁰⁸⁹ Adapter (CFAA) and an Intra-Frame Adapter (IFA). CFAA uses cross-frame at- ⁰⁹⁰ tention to allow information exchange between frames, enabling our model to ⁰⁹¹ collect complementary features in each video set for powerful video-level repre- ⁰⁹² sentations. IFA transfers the visual ability of image-based foundation model to ⁰⁹³ downstream tasks, providing strong intra-frame appearance representation. ⁰⁹⁴

 Furthermore, we also propose the Platform Bridging Prompt (PBP) module ⁰⁹⁵ to solve the visual misalignment problem in cross-platform tasks, where the ⁰⁹⁶ prompts are adopted to provide explicit instruction to the pre-trained models ⁰⁹⁷ for generating task-specific results. Specifically, the designed PBP is two sets ⁰⁹⁸ of platform-specific prompts brought in Image Encoder, which aims to guide ⁰⁹⁹ the model to focus on learning platform-invariant features, thus bridging the ¹⁰⁰ semantic gap of visual features between the ground and aerial platforms. ¹⁰¹

In summary, the main contributions are as follows: ¹⁰²

- We are the first to collect a large-scale Ground-to-Aerial Video person ReID ¹⁰³ benchmark dataset for the task of cross-platform video-based person ReID ¹⁰⁴ and conducted extensive baseline methods on our dataset. ¹⁰⁵
- We propose to transform the essential cross-platform visual part alignment ¹⁰⁶ problem into visual-semantic alignment with the help of CLIP, and propose ¹⁰⁷ PBP to further bridge the semantic gap of visual features between the ground ¹⁰⁸ and aerial platforms. ¹⁰⁹
- We propose the Video Set-Level-Adapter to efficiently adapt pre-trained ¹¹⁰ image-based visual foundation model to the video ReID tasks. Our meth- ¹¹¹ ods achieves state-of-the-art performances on three widely used video ReID ¹¹² datasets and our cross-platform benchmark dataset. ¹¹³

2 Related Works 114

 In this section, we provide a concise review of two sets of works closely related ¹¹⁵ to our research. ¹¹⁶

 Video ReID Datasets. Existing works on person ReID can be categorized ¹¹⁷ into image-based ReID and video-based ReID. For video-based ReID, the pop- ¹¹⁸ ular datasets include PRID-2011 [\[15\]](#page-15-2), iLIDS [\[36\]](#page-16-1), MARS [\[44\]](#page-16-0) and LS-VID [\[22\]](#page-15-6), ¹¹⁹ etc. PRID-2011 comprises multiple person trajectories captured by two static ¹²⁰ surveillance cameras, encompassing only 400 sequences involving 200 individu- ¹²¹ als. In contrast, LS-VID is a large-scale benchmark featuring 14,943 sequences ¹²² of 3,772 persons, with videos captured at various times throughout the day. ¹²³ Many works have achieved superior performances on these datasets. Specifically, ¹²⁴ FGReID [\[40\]](#page-16-2) achieved Rank-1 at 96.1% on PRID-2011, SINet [\[2\]](#page-14-0) got 92.5% of ¹²⁵

 Rank-1 on iLIDS and DenseIL [\[14\]](#page-14-6) achieved an mAP of 87.0% on MARS, indicat- ¹²⁶ ing a saturation trend on these datasets. The existing datasets are all captured ¹²⁷ with a single platform, i.e. ground surveillance cameras, while we aim to collect a ¹²⁸ Ground-to-Aerial cross-platform video ReID dataset to support the development ¹²⁹ 130 of this field. 130

131 Video ReID Methods. The object processed in video-based person ReID is 131 a video composed of a sequence of person images. Videos contain richer temporal ¹³² and spatial information than images. Previous works used 3D CNNs [\[1,](#page-14-2) [13,](#page-14-5) [23\]](#page-15-0), ¹³³ temporal weighting [\[6,](#page-14-7)[12,](#page-14-1)[13,](#page-14-5)[44,](#page-16-0)[46\]](#page-17-0), optical flow [\[8,](#page-14-8)[11,](#page-14-9)[26\]](#page-15-7) and many other meth- ¹³⁴ ods [\[7,](#page-14-10) [10,](#page-14-4) [17,](#page-15-8) [18\]](#page-15-5) to model the spatiotemporal information of video sequences ¹³⁵ to alleviate the negative effects of appearance change, occlusion, pose varia- ¹³⁶ tion, etc. For 3D CNNs, STRF [\[1\]](#page-14-2) proposed a trainable unit with negligible ¹³⁷ computational overhead, which is used in conjunction with 3D-CNN to learn ¹³⁸ discriminate 3D features. For temporal weighting, AP3D [\[13\]](#page-14-5) assigns attention ¹³⁹ scores for each spatial region to achieve discriminative parts mining and frame ¹⁴⁰ selection. Optical flow refers to the movement of target pixels in an image due ¹⁴¹ to the movement of objects in the image or the movement of the camera in two ¹⁴² consecutive frames. STA [\[12\]](#page-14-1) makes use of color and optical flow information in ¹⁴³ order to capture appearance and motion information. An essential topic to im- ¹⁴⁴ prove the performance of video-based ReID is the visual part alignment between ¹⁴⁵ query and gallery videos. SRL [\[4\]](#page-14-11) learns the structural relationship between lo- ¹⁴⁶ cal regions in an image and achieves the alignment of videos. RQEN [\[32\]](#page-16-3) solves ¹⁴⁷ the problem of misalignment caused by the difference in image quality between ¹⁴⁸ different regions by compensating between local regions. PiT [\[42\]](#page-16-4) divides each ¹⁴⁹ frame into small patches of different granularity in different directions, allowing ¹⁵⁰ the model to align two videos with multi-scale local information. It is relatively ¹⁵¹ easy to align the visual part features between the query and gallery videos for ¹⁵² these methods by utilizing a simple stripe partition, as the variations of view, ¹⁵³ pose, and resolution are limited among the single ground cameras. ¹⁵⁴

 To solve the severe misalignment of visual features in cross-platform tasks, ¹⁵⁵ we resort to visual-semantic alignment of the CLIP model to align the cross- ¹⁵⁶ platform person features. ¹⁵⁷

$\frac{158}{158}$ 3 Dataset 158

 In this section, we first introduce how we collect and annotate our G2A-VReID ¹⁵⁹ dataset in Sec. [3.1](#page-3-0) and Sec. [3.2.](#page-4-1) Then, we make comparisons with other datasets ¹⁶⁰ and highlight the key characteristics of G2A-VReID in Sec. [3.3.](#page-4-2) ¹⁶¹

3.1 Dataset Collection ¹⁶²

 To increase the richness of data and make it closer to the real environment. The ¹⁶³ videos are captured from 9 different scenarios, including library, crossroads, bus ¹⁶⁴ stop, tourist sites, etc. Following the principle of protecting public privacy, we ¹⁶⁵ post notes to inform pedestrians of the video capture area in the shooting stage, ¹⁶⁶

Fig. 1: Visualization of proposed G2A-VReID at different heights.

Fig. 2: The distributions of sequence length.

 and the dataset will be licensed for non-profit academic research only. Ground ¹⁶⁷ surveillance cameras are used to shoot videos from the ground perspective, and a ¹⁶⁸ DJI Mavic UAV is adopted to gather videos from the sky perspective. In detail, ¹⁶⁹ the surveillance camera is fixed at a height of about two meters above the ground, ¹⁷⁰ and the UAV flies at different heights from 20 to 60 meters. The UAV flies in a ¹⁷¹ mode of hovering, cruising, and rotating, making the captured persons contain ¹⁷² richer perspectives. ¹⁷³

 We cropped the captured video at intervals of 0.5 seconds to generate 31,770 ¹⁷⁴ frames of scene images. Some of them are shown in Fig. [1.](#page-4-0) We can see that there ¹⁷⁵ are great differences in the viewing perspective and resolution of images taken ¹⁷⁶ on different platforms, making it more challenging than existing datasets. ¹⁷⁷

3.2 Annotation 178 **178**

 To the best of our knowledge, there is not exist ground-to-aerial cross-platform ¹⁷⁹ video-based person Re-ID dataset. One reason is that it takes a lot of effort to ¹⁸⁰ annotate a large-scale dataset. We invited 40 experienced annotators and took ¹⁸¹ two weeks to complete the annotation process. During annotation, all persons ¹⁸² appeared in the videos are marked with boundary boxes, and each person is ¹⁸³ cropped from the scene image according to the box. At the same time, we use ¹⁸⁴ mosaic to mask the clear face information for privacy protection. Then, the ¹⁸⁵ same people in the UAV and surveillance videos are associated and assigned ¹⁸⁶ unique IDs. Next, we combine all the images of a person in one camera into ¹⁸⁷ one trajectory. Thus, each person has at least two trajectories, one from the ¹⁸⁸ surveillance camera and the other from the UAV. Finally, we annotated 185,907 ¹⁸⁹ images of 2,788 identities, corresponding to 5,576 tracklets. Fig. [2](#page-4-0) shows the ¹⁹⁰ distributions of sequence length. ¹⁹¹

3.3 Characteristics of Our G2A-VReID ¹⁹²

 Compared with existing VReID datasets [\[22,](#page-15-6)[36,](#page-16-1)[44\]](#page-16-0) , the characteristics of G2A- ¹⁹³ VReID are as follows: ¹⁹⁴

 Drastic view changes. The tracklets in the query and gallery sets are ¹⁹⁵ captured from different types of cameras, specifically ground and aerial views. ¹⁹⁶

Datasets	G2A-VReID LS-VID [22]		Mars [44]		iLIDS [36] PRID-2011 [15] 3DPeS [3]	
identities	2,788	3.772	1.261	300	200	200
tracklets	5.576	14.943	20.715	600	400	1.000
images	185.907	2.982.685	1,067,516	42.460	40.033	200,000
AD(s)	16.7	6.7	5.6	2.4	3.3	6.7
camera	2	15	6	2	2	8
view	ground $&$ sky ground	fixed	ground	ground	ground	ground
CWM	moving		fixed	fixed	fixed	fixed

Table 1: Comparison of G2A-VReID with other Video-ReID datasets. CWM denotes the camera working mode. AD is the average duration of each video sequence.

 Consequently, the transitions between the views in the query and gallery track- ¹⁹⁷ lets are significantly different, compared to the current video-based person ReID ¹⁹⁸ datasets. ¹⁹⁹

 Large number of annotated identities. Our G2A-VReID consists of ²⁰⁰ 2,788 person IDs and 185,907 images, corresponding to 5,576 tracklets. The ²⁰¹ number of identities is significantly higher than all existing datasets except LS- ²⁰² VID [\[22\]](#page-15-6), as shown in Tab. [1.](#page-5-0) ²⁰³

 Rich outdoor scenarios with large view changes. The G2A-VReID ²⁰⁴ consists of footage from nine diverse scenarios, including libraries, bus stops, ²⁰⁵ subway station entrances, tourist sites, crossroads, and more. This diversity ²⁰⁶ enables G2A-VReID to accurately represent realistic environments for person ²⁰⁷ ReID. In contrast, the videos from Mars [\[44\]](#page-16-0) are captured in a university cam- ²⁰⁸ pus, while iLIDS [\[36\]](#page-16-1) only contains videos collected from an airport arrival hall. ²⁰⁹ These datasets exhibit comparatively limited scenarios in terms of environmental ²¹⁰ 211 diversity. 211

 Huge difference in resolution. As depicted in Fig. [1,](#page-4-0) the height of the ²¹² UAV-mounted camera varies significantly, spanning from 20 to 60 meters, leading ²¹³ to varying resolutions of individuals captured in each scene. The width distri- ²¹⁴ bution of individuals in images captured by ground cameras primarily ranges ²¹⁵ from 10 to 70 pixels. Whereas, in UAV-captured images, this range is narrower ²¹⁶ from 5 to 35 pixels. This discrepancy in resolution distribution between query ²¹⁷ and gallery images introduce much complexity to the task of ground-to-aerial ²¹⁸ video-based person ReID. ²¹⁹

4 Approach ²²⁰

 Fig. [3](#page-6-0) illustrates the overall architecture of our proposed method. Our approach ²²¹ focuses on cross-platform video person ReID and aims to parameter-efficiently ²²² adapt pre-trained image-based visual foundation models to video person ReID ²²³ tasks. To bridge visual misalignment in cross-platform tasks, we propose to trans- ²²⁴ form the fundamental visual alignment problem into visual-semantic alignment ²²⁵ based on CLIP. Specifically, we design a simple baseline method, named FT- ²²⁶ CLIP, through fine-tuning the Image Encoder of CLIP. A two-stage training ²²⁷ strategy is employed to optimize our approach. ID-specific description tokens ²²⁸ are learned from samples originating from various platforms in the first train- ²²⁹ ing stage. Then in the second stage, visual features extracted from different ²³⁰ platforms are aligned with the semantic features obtained through the learned ²³¹

Fig. 3: Overview of our proposed framework. A two-stage training strategy is employed to optimize our approach: ID-specific description and shared text prompt are learned in stage one (left) while freezing Image Encoder and Text Encoder; Video Set-Level-Adapter and PBP are introduced and trained in the second stage (right) while freezing other parameters.

 description tokens. Our work shows that FT-CLIP with the constraint of visual- ²³² semantic alignment yields competitive performance, but it is not parameter ef- ²³³ ficient and ignores inter-frame information. Therefore, we propose the Video ²³⁴ Set-Level-Adapter for efficient model tuning, termed as VSLA-CLIP, which out- ²³⁵ performs FT-CLIP while utilizing fewer parameters. To further bridge the se- ²³⁶ mantic gap in cross-platform tasks, we propose a prompt-based approach called ²³⁷ Platform-Bridge Prompt (PBP). ²³⁸

239 4.1 Revisiting CLIP-ReID 239 4.1 239

 CLIP-ReID [\[25\]](#page-15-4) is the pioneering approach that employs pre-trained vision- ²⁴⁰ language models for image-based ReID. CLIP [\[29\]](#page-15-3) relies on text labels to gen- ²⁴¹ erate text descriptions. However, the labels in ReID tasks are indexes rather ²⁴² than specific text, which lacks the ability to depict detailed information about ²⁴³ the corresponding persons. To solve this problem, CLIP-ReID uses a series of ²⁴⁴ ID-specific learnable tokens to learn text descriptions and adapts a two-stage ²⁴⁵ optimization strategy. ²⁴⁶

²⁴⁷ In the first training stage, only ID-specific tokens are optimized to learn text ²⁴⁷ 248 descriptions for each ID. Text \mathcal{TD} that feeds into Text-Encoder $\mathbf{E}_t(\cdot)$ is "a photo 248 249 of $[X]_1$... $[X]_M$ person", where $[X]_i$ is the learnable tokens. Text embedding T 249 \mathbb{Z}_{250} and image embedding **I** are obtained by: \mathbb{Z}_{250}

$$
\mathbf{T} = \mathbf{E}_t(\mathcal{TD}), \quad \mathbf{I} = \mathbf{E}_i(\mathcal{I}), \tag{1}
$$

252 where $\mathbf{E}_i(\cdot)$ is the Image Encoder. The image-to-text contrastive loss \mathcal{L}_{i2t} and 252 253 text-to-image contrastive loss \mathcal{L}_{t2i} are used to optimize $[\mathbf{X}]_1...\mathbf{X}]_M$. Since there 253 254 are samples with the same ID in a batch, \mathcal{L}_{t2i} in CLIP-ReID is defined as: 254

$$
\mathcal{L}_{t2i}(y_i) = \frac{-1}{|P(y_i)|} \sum_{p \in P(y_i)} \log \frac{\exp(s(\mathbf{I}_p, \mathbf{T}_{y_i}))}{\sum_{a=1}^B \exp(s(\mathbf{I}_a, \mathbf{T}_{y_i}))},\tag{2}
$$

256 where \mathbf{T}_{y_i} represents the text embedding of ID- y_i , $P(y_i) = \{p \in \{1...B\}, y_p = y_i\}$ 256 257 is the set of positive samples for \mathbf{T}_{y_i} and B represents the batch size. \mathcal{L}_{i2t} is 257 258 similar to \mathcal{L}_{t2i} . The overall loss function of stage one \mathcal{L}_{stage1} is as follows: 258

$$
\mathcal{L}_{stage1} = \mathcal{L}_{i2t} + \mathcal{L}_{t2i}.\tag{3}
$$

²⁶⁰ In the second stage, the ID-specific tokens and Text-Encoder are frozen. ²⁶⁰ 261 Triplet loss \mathcal{L}_{tri} [\[31\]](#page-16-5), identity loss \mathcal{L}_{id} , and image-to-text cross-entropy loss \mathcal{L}_{i2tce} 261 262 are used to optimize CLIP Image Encoder. The \mathcal{L}_{i2tce} is defined as follows: 262

$$
\mathcal{L}_{i2tce}(y) = \sum_{k=1}^{N} -q_k \log \frac{\exp(s(\mathbf{I}_y, \mathbf{T}_{y_k}))}{\sum_{y_a=1}^{N} \exp(s(\mathbf{I}_y, \mathbf{T}_{y_a}))},
$$
(4) 263

264 where q_k denotes smooth label [\[33\]](#page-16-6) in the target distribution of the k_{th} ID, s 264 ²⁶⁵ represents cosine similarity, and N is the number of identities. ²⁶⁵

²⁶⁶ 4.2 Visual-Semantic Alignment ²⁶⁶

 We propose to transform the fundamental challenge of cross-platform visual ²⁶⁷ alignment into visual-semantic alignment, and explore the efficacy of fine-tuning ²⁶⁸ to adapt CLIP to video-based ReID tasks with visual-semantic alignment, named ²⁶⁹ the model FT-CLIP. As shown in Fig. [3](#page-6-0) (left), learnable ID-specific description ²⁷⁰ tokens $[S]$; and shared text prompts $[P]$; are inserted into the Text-Encoder. All 271 272 the tokens that feed into the Text-Encoder are concatenated as " $[{\bf P}]_{1}...[{\bf P}]_{n/2}$: 272 $[\mathbf{S}]_1...\mathbf{S}]_M:[\mathbf{P}]_{n/2+1}...\mathbf{P}]_n$ ". Semantic features **T** can be obtained by:

274
$$
\mathbf{T} = \mathbf{E}_t([[P]_1...[P]_{n/2}:[S]_1...[S]_M:[P]_{n/2+1}...[P]_n]),
$$
 (5) 274

275 where $[\cdot]$: represents the concatenating operation, the dimensions of $[P]_i$ and 275 276 $[\mathbf{S}]$ are the same as that of the word embedding. 276

 Inspired by CLIP-ReID [\[25\]](#page-15-4), we adopt a two-stage optimization strategy. In ²⁷⁷ the first optimization stage, we freeze both the Image Encoder and Text Encoder, ²⁷⁸ 279 using loss function \mathcal{L}_{stage1} in Eq. [\(3\)](#page-7-0) to optimize ID-specific description tokens 279 and the shared text prompts. In the second optimization stage, Image Encoder ²⁸⁰ is trained to align the video embeddings to semantic features. Given a video ²⁸¹ 282 sample $\mathcal{V}_i \in \mathbb{R}^{T \times H \times W \times 3}$ with T frames, the CLIP image encoder encodes the T 282 frames independently and mean-pooling is used to fuse the frame embeddings. ²⁸³ 284 Visual embeddings V_i can be obtained by: 284

$$
\mathbf{V}_{i} = \frac{1}{T} \sum_{j}^{T} \mathbf{E}_{i}(\mathcal{V}_{ij}), \qquad (6) \qquad 285
$$

286 where V_{ij} represents the j_{th} frame of V_i . The visual to semantic cross-entropy 286 287 loss \mathcal{L}_{12sce} , \mathcal{L}_{i2t} and \mathcal{L}_{t2i} are adopted to align visual embeddings to semantic 287 288 features. \mathcal{L}_{v2sce} is similar to \mathcal{L}_{i2tce} , defined as: 288

$$
\mathcal{L}_{v2sce}(i) = \sum_{k=1}^{N} -q_k \log \frac{\exp(s(\mathbf{V}_i, \mathbf{T}_{y_k}))}{\sum_{y_j=1}^{N} \exp(s(\mathbf{V}_i, \mathbf{T}_{y_j}))},
$$
(7) 289

290 where q_k represents the soft label in the target distribution, and N is the number 290 291 of identities. Meanwhile, triplet loss \mathcal{L}_{tri} with soft-margin and ID loss \mathcal{L}_{id} are 291 also used: ²⁹²

$$
\mathcal{L}_{tri} = \max(d_p - d_n + \theta, 0),\tag{8}
$$

294

$$
\mathcal{L}_{id} = \sum_{k=1}^{N} -q_k \log(p_k),\tag{9}
$$

where θ is the soft-margin of \mathcal{L}_{tri} , p_k represents ID prediction logits of class k, 296 297 d_p and d_n are feature distances of positive pair and negative pair. The overall 297 298 loss \mathcal{L}_{stage2} is defined as follows: 298

$$
\mathcal{L}_{stage2} = \mathcal{L}_{v2sce} + \beta \mathcal{L}_{tri} + \gamma \mathcal{L}_{id} + \delta \mathcal{L}_{i2t} + \epsilon \mathcal{L}_{t2i},\tag{10}
$$

300 where β , γ , δ and ϵ balance the importance of the relative losses. 300

4.3 Video Set-Level-Adapter for Efficient Model Tuning ³⁰¹

 Video ReID requires the model to learn appearance representation in both intra- ³⁰² frame and inter-frames. We present a novel perspective, where a video sample ³⁰³ 304 is regarded as a frame set $S_i = \{V_{ij} | j = 1, 2, ..., n\}$ consisting of independent 304 frames, and propose an efficient Video Set-Level-Adapter (VSLA) module. The ³⁰⁵ VSLA consists of two components: an Intra-Frame Adapter (IFA, Fig. [3](#page-6-0) (a)) ³⁰⁶ and a Cross-Frame Attention Adapter (CFAA, Fig. [3](#page-6-0) (b)). IFA is designed to ³⁰⁷ parameter-efficiently adapt the pre-trained visual foundation model to down- ³⁰⁸ stream tasks, it takes raw frames as input and provides image-level appearance ³⁰⁹ representation. CFAA takes a set of frames as input, aggregating the inter-frame ³¹⁰ complementary information for more powerful video-level representations. ³¹¹

 IFA consists of two mapping matrices in a bottleneck structure. It runs in ³¹² parallel with MLP blocks within each layer of the Image Encoder. As shown in ³¹³ Fig. [3,](#page-6-0) the Image Encoder in CLIP (ViT-Base-16) consists of alternating layers ³¹⁴ of Multi-Head Self-Attention (MSA) [\[34\]](#page-16-7), Multi-Layer Perceptron (MLP) and ³¹⁵ 316 LayerNorm (LN), which can be formulated as: 316 316

$$
\mathbf{x}_{i}^{'} = \text{MSA}(\text{LN}(\mathbf{x}_{i-1})) + \mathbf{x}_{i-1},\tag{11}
$$

$$
\mathbf{x}_{i} = \text{MLP}(\text{LN}(\mathbf{x}_{i}^{'})) + \mathbf{x}_{i}^{'}.
$$
 (12) 318

319 We denote the input of IFA as $\mathbf{x}'_i \in \mathbb{R}^{T \times (N+1) \times D}$, where $N = HW/P^2$, D 319 represents the dimension and T is the number of frames. The down-projection 320 321 layer \mathbf{W}_{down} projects \mathbf{x}'_i to $\mathbf{x}''_i \in \mathbb{R}^{T \times (N+1) \times \alpha}$, where α is a hyper-parameter. 321 322 Then \mathbf{x}''_i goes through a GELU σ and up-projection layer \mathbf{W}_{up} . The process can 322 be formulated as: ³²³

$$
IFA(\mathbf{x}_{i}^{'}) = \sigma(\mathbf{x}_{i}^{'} \mathbf{W}_{down}) \mathbf{W}_{up}, \qquad (13) \qquad 324
$$

$$
\mathbf{x}_{i} = \text{MLP}(\text{LN}(\mathbf{x}_{i}^{'})) + \mathbf{x}_{i}^{'} + \text{IFA}(\mathbf{x}_{i}^{'}).
$$
 (14) 325

 Unlike LoRA [\[19\]](#page-15-9), which adds trainable pairs of rank decomposition matrices ³²⁷ in parallel to every pre-existing weight matrix, IFA is solely in parallel with ³²⁸ MLP. Therefore, adopting IFA results in far fewer parameters, accounting for ³²⁹ only 5.5% ($\alpha = 256$) of the whole Image Encoder (ViT-Base-16). 330

 CFAA is also a bottleneck architecture with a cross-frame attention layer in ³³¹ 332 the middle. Our model $M(\cdot)$ with CFAA is immune to frame ordering [\[5\]](#page-14-12), which 332 can be formulated as: ³³³

334
$$
\mathbf{M}(\{\mathcal{V}_{ij}|j=1,2,...,n\}) = \mathbf{M}(\{\mathcal{V}_{i\pi(j)}|j=1,2,...,n\}),
$$
 (15) 334

335 where π is any permutation [\[41\]](#page-16-8). We denote the input of CFAA as $\mathbf{x}_{i-1} \in$ 335 336 $\mathbb{R}^{T\times(N+1)\times D}$, the down-projection layer projects \mathbf{x}_{i-1} to $\mathbf{x}'_{i-1} \in \mathbb{R}^{T\times(N+1)\times \alpha}$. 336 The cross-frame attention layer has the same structure as Multi-Head Self- ³³⁷ Attention (MSA) [\[34\]](#page-16-7). To aggregate the complementary information among T ³³⁸ frames, we reshape the input of cross-frame attention layer \mathbf{x}'_{i-1} to $\mathbf{x}'_{i-1} \in$ 339 340 $\mathbb{R}^{(N+1)\times T\times\alpha}$, and the attention is done in the second dimension of \mathbf{x}'_{i-1} , thus en- 340 abling visual information to exchange across frames. Then, we restore the output ³⁴¹ 342 of cross-frame attention layer from $\mathbf{x}_{i-1}^{\prime\prime\mathsf{T}} \in \mathbb{R}^{(N+1)\times T\times\alpha}$ to $\mathbf{x}_{i-1}^{\prime\prime} \in \mathbb{R}^{T\times(N+1)\times\alpha}$, 342 343 with \mathbf{x}''_{i-1} passing through up-projection layer. For CFAA, \mathbf{x}'_i in Eq.[\(11\)](#page-8-0) can be 343 obtained by: ³⁴⁴

$$
\mathbf{x}_{i}^{'} = \text{MSA}(\text{LN}(\mathbf{x}_{i-1})) + \mathbf{x}_{i-1} + \text{CFAA}(\mathbf{x}_{i-1}).\tag{16}
$$

4.4 Platform-Bridge Prompt ³⁴⁶

 Making visual embeddings align with semantic features could effectively alleviate ³⁴⁷ the feature misalignment in cross-platform ReID tasks, but yet to be improved. ³⁴⁸ We additionally introduce Platform-Bridge Prompt (PBP) to bridge platform ³⁴⁹ differences further. PBP is designed to guide model focusing on platform dif- ³⁵⁰ ferences. As illustrated in Fig. [3,](#page-6-0) we add a series of platform-specific learnable ³⁵¹ prompts in the Image Encoder. Specifically, there are only two sets of prompts, ³⁵² one corresponding to the ground platform and the other to the UAV platform. ³⁵³ Applying PBP can be viewed as changing the inputs of each MSA layer in Vision ³⁵⁴ Transformer (ViT [\[9\]](#page-14-13)). We denote the inputs of the MSA layer as $\mathbf{h} \in \mathbb{R}^{(N+1)\times D}$, 355 356 where $N = HW/P^2$ and D represents the dimension. The MSA layer with PBP 356 357 can be formulated as follows, 357 can be formulated as follows,

$$
f_k(\mathbf{h}, \mathbf{p}_k) = \begin{cases} MSA_k([\mathbf{h} : \mathbf{p}_k^{ground}]) & \text{if } k < d \text{ and } \mathbf{h} \in Set^{ground} \\ MSA_k([\mathbf{h} : \mathbf{p}_k^{uav}]) & \text{if } k < d \text{ and } \mathbf{h} \in Set^{uav} \\ MSA_k(\mathbf{h}) & \text{if } k \ge d, \end{cases}
$$
(17) 358

359 where $\mathbf{p}_k^{ground} \in \mathbb{R}^{l \times D}$, $\mathbf{p}_k^{uav} \in \mathbb{R}^{l \times D}$, d and l are the depth and length of PBP, 359 360 [:] denotes the concatenation operation, MSA_k represents the k_{th} MSA layer in 360 $\frac{1}{361}$ Image Encoder, Set^{uav} and Set^{ground} are two sets containing the samples from 361 the UAV and the samples from the ground platform respectively. ³⁶²

³⁶³ 5 Experiments ³⁶³

 In this section, we first introduce the evaluation protocols and implementation ³⁶⁴ details. Subsequently, we compare our proposed methods with state-of-the-art ³⁶⁵ algorithms. Finally, ablation studies are conducted to investigate the contribu- ³⁶⁶ tion of each component. ³⁶⁷

³⁶⁸ 5.1 Datasets and Evaluation Metrics ³⁶⁸

 We conduct experiments on our G2A-VReID and three widely used video person ³⁶⁹ ReID datasets, *i.e.*, iLIDS [\[36\]](#page-16-1), Mars [\[44\]](#page-16-0), and LS-VID [\[22\]](#page-15-6). For G2A-VReID, 370 we roughly divide 2788 identities into training and test sets at a ratio of 1 : 2, ³⁷¹ similar to that in LS-VID [\[22\]](#page-15-6). Therefore, there are 930 identities with 1860 ³⁷² tracklets in training set and 1858 identities with 3716 tracklets in the testing ³⁷³ set. During the evaluation, we keep the cross-camera search paradigm in ReID ³⁷⁴ task [\[15,](#page-15-2)[22,](#page-15-6)[36,](#page-16-1)[44\]](#page-16-0). Query and gallery are composed of video sequences from the ³⁷⁵ ground and UAV cameras respectively, making G2A-VReID more challenging ³⁷⁶ than other datasets. ³⁷⁷

³⁷⁸ We employ two standard metrics to evaluate the performance of our model, ³⁷⁸ ³⁷⁹ i.e., Cumulative Matching Characteristic(CMC) at Rank-1 and mean average ³⁷⁹ ³⁸⁰ precision (mAP). ³⁸⁰

5.2 Implementation Details 381

 ViT-Base-16 [\[29\]](#page-15-3) is selected as the Image Encoder. The initial weights are chosen ³⁸² as that of ViFi-CLIP [\[30\]](#page-15-10), whose Image Encoder and Text Encoder have been ³⁸³ fine-tuned on the extensive action recognition dataset Kinetics-400 [\[20\]](#page-15-14). Sparse ³⁸⁴ temporal sampling strategy [\[35\]](#page-16-13) is used to generate a clip containing 8 frames, ³⁸⁵ with each frame resized to 256×128 . We randomly disrupt the order of the frames 386 in each clip. Each batch has 32 clips corresponding to 8 identities. Adam [\[21\]](#page-15-15) ³⁸⁷ optimizer is used in both stages. In the first training stage, we optimize the ³⁸⁸ ID-specific description tokens and shared text prompts with a learning rate of ³⁸⁹ 3.5×10^{-4} , while freezing other parameters. In the second training stage, we 390 adopt the initial learning rate 5×10^{-6} with decaying by 0.1 and 0.01 at the 60_{th} 391 and 90 $_{th}$ epoch for FT-CLIP, and the initial learning rate 1×10^{-4} with decaying 392 393 by 0.1 and 0.01 at the 60_{th} and 90_{th} epoch for VSLA-CLIP. The margin θ of 393 394 triplet loss in Eq. [\(8\)](#page-8-1) is set as 0.3, the β , γ , δ and ϵ in Eq. [\(10\)](#page-8-2) are 1.0, 0.25, 1.0 394 and 1.0, respectively. Each image is padded with 10 pixels and augmented with ³⁹⁵ random cropping, horizontal flipping, and erasing [\[45\]](#page-16-14). ³⁹⁶

5.3 Comparison with State-of-the-Art Methods ³⁹⁷

 On G2A-VReID Dataset. We comprehensively evaluate nine state-of-the-art ³⁹⁸ methods [\[2,](#page-14-0) [10,](#page-14-4) [13,](#page-14-5) [17,](#page-15-8) [18,](#page-15-5) [28,](#page-15-12) [37,](#page-16-12) [38,](#page-16-10) [42\]](#page-16-4) on G2A-VReID, and report the results ³⁹⁹ in Tab. [2.](#page-10-0) As can be seen that, MGH [\[38\]](#page-16-10) and PiT [\[42\]](#page-16-4) showed superior per- ⁴⁰⁰ formances on our G2A-VReID dataset, i.e. MGH achieves 76.7% on mAP and ⁴⁰¹ 69.9% on Rank-1, surpassing other models with a large margin. We attribute ⁴⁰² this to the careful visual alignment strategy adopted by MGH and PiT, which ⁴⁰³ involves splitting the full image into vertical or horizontal stripes and aiming to ⁴⁰⁴ align the stripes. This strategy mitigates the challenges of self-occlusion inherent ⁴⁰⁵ in the UAV perspective. Our method, extracting description tokens for each per- ⁴⁰⁶ son and aligning visual embeddings with semantic features, effectively solves the ⁴⁰⁷ cross-platform visual misalignment problem. Our VSLA-CLIP‡ achieves 79.70% ⁴⁰⁸ mAP and 72.55% Rank-1 on G2A-VReID, surpassing MGH by 3.0% at mAP ⁴⁰⁹ and 2.65% at Rank-1. ⁴¹⁰

 On All Video ReID Dataset. As shown in Tab. [2,](#page-10-0) all the variants of ⁴¹¹ our methods with aligning visual embeddings to semantic features, show consis- ⁴¹² tent improvement on all datasets. Especially, our method achieves 85.20% mAP ⁴¹³ and 91.66% Rank-1 on the challenging LS-VID dataset, which greatly improves ⁴¹⁴ the mAP by 2.80% and the Rank-1 by 1.86% compared with the state-of-the- ⁴¹⁵ art LSTRL [\[27\]](#page-15-13). 2) Models initialized by weights of ViFi-CLIP (ViFi-weight) are ⁴¹⁶ 417 marked as \ddagger , and it is effective compared with the original model weights released 417 by Open AI (marked as †). VSLA-CLIP initialized with ViFi-Weight improves ⁴¹⁸ the performance significantly by 1.15% mAP on LS-VID. 3) It is worth not- ⁴¹⁹ ing that VSLA-CLIP shows better performance than fine-tuning the whole Im- ⁴²⁰ age Encoder (FT-CLIP), with far fewer tunable parameters. Specifically, VSLA- ⁴²¹ CLIP_+^{\ddagger} outperforms the FT-CLIP \ddagger by 1.59% mAP on G2A-VReID with tuning 422 parameters (14.5M vs 88.0M). ⁴²³

1000 - 1101110 Treedman Tradepect and I DI Is thereform Dirage I fompe.						
Methods	Overall	Tunable	LS-VID		$G2A-VRelD$	
	Param(M)	Param (M)	mAP	$rank-1$	mAP	$rank-1$
$AP3D$ [13]	34.0	24.9	73.2	84.5	67.7	57.5
BiCnet-TKS [18]	33.7	29.3	75.1	84.6	63.4	51.7
$STMN$ [10]	90.9	87.0	69.2	82.1	66.7	56.1
$SINet$ [2]	33.7	27.3	79.6	87.1	74.5	65.6
baseline	86.1	86.1	76.10	84.26	72.80	63.62
$baseline+VSA$ $(FT-CLIP\ddagger)$	127.4	88.0	84.07	90.77	78.11	69.32
IFA	90.8	4.7	77.31	84.86	73.82	65.12
$IFA+VSA$	132.1	6.6	84.16	90.94	79.01	71.67
$IFA+VSA+CFAA (VSLA-CLIP+)$	140.0	14.5	85.20	91.66	79.70	72.55
IFA+VSA+CFAA+PBP	140.0	14.5			81.29	74.27

Table 3: Effectiveness of proposed components and comparison of the number of tunable parameters. **baseline** represents training $FT-CLIP$ \ddagger without Ly2sce in Eq.[\(7\)](#page-7-1), VSA is Visual-Semantic Alignment, IFA represents Intra-Frame Adapter, CFAA is Cross-Frame Attention Adapter and PBP is Platform Bridge Prompt.

⁴²⁴ Our experiments show that adapting pre-trained image-based models to video ⁴²⁴ ⁴²⁵ ReID tasks with the Video Set-Level-Adapter is both effective and efficient, ⁴²⁵ ⁴²⁶ setting a new baseline method for research endeavors in this field. ⁴²⁶

427 5.4 Ablation Study 427 427 427

⁴²⁸ To demonstrate the effectiveness of our proposed components in Sec[.4,](#page-5-1) we con- ⁴²⁸ ⁴²⁹ duct ablation studies and compare our method with four other methods. ⁴²⁹

 Effectiveness of Visual-Semantic Alignment. To verify the effectiveness ⁴³⁰ of Visual-Semantic Alignment, we first fine-tune the Image Encoder by directly ⁴³¹ 432 using two common losses $(\mathcal{L}_{tri}$ and \mathcal{L}_{id} in Eq.[\(10\)](#page-8-2)) in ReID task, and set this 432 model as our baseline. As shown in Tab. [3,](#page-12-0) Visual-Semantic Alignment is effective ⁴³³ for both finetuning-based methods (FT-CLIP‡ vs. baseline) and adapter-based ⁴³⁴ methods (IFA+VSA vs. IFA). In addition, we conduct ablation experiments to ⁴³⁵ analyze three loss functions for visual-semantic alignment. As shown in Tab. [5,](#page-13-0) ⁴³⁶ 437 when \mathcal{L}_{i2t} , \mathcal{L}_{t2i} and \mathcal{L}_{v2sce} are used jointly, our model achieves the best results 437 438 on LS-VID. 438

 Effectiveness of Video Set-Level-Adapter. Our goal for proposing the ⁴³⁹ Video Set-Level-Adapter is to efficiently adapt pre-trained image-based visual ⁴⁴⁰ foundation mode to video-based ReID tasks. Considering that the Video Set- ⁴⁴¹ Level-Adapter (VSLA) contains two modules, i.e., an Intra-Frame Adapter (IFA) ⁴⁴² and a Cross-Frame Attention Adapter (CFAA), we perform ablation experiments ⁴⁴³ separately to verify the effectiveness of each module. As shown in Tab. [3,](#page-12-0) IFA ⁴⁴⁴ surpasses the full fine-tuned baseline method (77.31% vs. 76.10% mAP on LS- ⁴⁴⁵ VID) with significantly less number of tunable parameters (4.7M vs. 86.1M). ⁴⁴⁶ In addition, CFAA further improves model performance (85.20% vs. 84.16% ⁴⁴⁷ mAP on LS-VID) while also using a small number of tunable parameters, which ⁴⁴⁸ indicates that regarding video sequences as a set is effective in Video-based ReID ⁴⁴⁹ tasks, providing a new solution for adapting Image-based foundation models to ⁴⁵⁰ video-based tasks. ⁴⁵¹

452 We also analyze the hyper-parameter α introduced in Sec. [4.3,](#page-8-3) which deter- 452 453 mines model's complexity and the number of training parameters. We set α to be 453

Table 4: Effect of α of Intra-Frame Adapter and Cross-Frame Attention Adapter on LS-VID. TP represents the tunable parameter.

α	$\rm (M)$ TР		LS-VID		
	IFA	CFA A	mAP	rank-1	
64	1.2	1.4	79.58	86.71	
128	2.4	3.2	83.64	90.00	
256	4.7	7.9	85.20	91.66	
384	7.1	14.2	85.09	91.49	

Table 5: Ablation experiments for the losses used for Visual-Semantic Alignment on LS-VID.

⁴⁵⁴ 64, 128, 256, and 384 respectively. As presented in Tab. [4,](#page-13-0) the performances tend ⁴⁵⁴ 455 to improve with increasing α , and achieves the best mAP at $\alpha = 256$. Therefore, 455 456 we fix α to be 256 for other datasets. At this setting, the VSLA module con-⁴⁵⁷ tains only approximately 12.6 million parameters parameters, and VSLA-CLIP ⁴⁵⁷ ⁴⁵⁸ achieves 85.20% mAP on LS-VID, surpassing FT-CLIP by 1.13%. ⁴⁵⁸

459 Effectiveness of PBP. The 459 459 ⁴⁶⁰ Platform Bridge Prompt (PBP) ⁴⁶⁰

 $Fig. 4:$ Analysis on the depth and length of 469 PBP on our G2A-VReID. 470 Sec. [4.4.](#page-9-0) To analyze the impact of PBP on our G2A-VReID.

⁴⁷¹ these two parameters on the model, we use grid-search to explore the impact of 471 ⁴⁷² different value combinations on the model performance. The results for various ⁴⁷² ⁴⁷³ parameter combinations of the model are presented in Fig. [4,](#page-13-1) and the optimal ⁴⁷³ 474 performance is achieved when $d = 3$ and $l = 16$.

$\frac{475}{475}$ 6 Conclusion $\frac{475}{475}$

 In this paper, we construct a large-scale benchmark dataset for cross-platform ⁴⁷⁶ video person ReID, which contains 5,576 tracklets of 2788 IDs and can serve ⁴⁷⁷ as a potential complement to current ground surveillance system. Besides, we ⁴⁷⁸ also propose a baseline method solving cross-platform visual misalignment prob- ⁴⁷⁹ lem by transforming the visual alignment problem into visual-semantic align- ⁴⁸⁰ 481 ment through the vision-language model $(i.e., CLIP)$ and using platform-specific 481 prompts. To efficiently and effectively adapt the pre-trained image-based visual ⁴⁸² foundation model to Video ReID, We propose a Video Set-Level-Adapter module, ⁴⁸³ which aggregates the inter-frame complementary information for more powerful ⁴⁸⁴ video-level representations with only 12.6 million trainable parameters. Experi- ⁴⁸⁵ mental results demonstrate that our proposed methods achieve state-of-the-art ⁴⁸⁶ performance and will be a new trend for cross-platform video ReID tasks. ⁴⁸⁷

References ⁴⁸⁸

- 1. Aich, A., Zheng, M., Karanam, S., Chen, T., Roy-Chowdhury, A.K., Wu, Z.: Spatio- 489 temporal representation factorization for video-based person re-identification. In: 490 Proceedings of the IEEE/CVF international conference on computer vision. pp. 491 152–162 (2021) [2,](#page-1-0) [4,](#page-3-1) [11](#page-10-1) 492
- 2. Bai, S., Ma, B., Chang, H., Huang, R., Chen, X.: Salient-to-broad transition for 493 video person re-identification. In: Proceedings of the IEEE/CVF Conference on 494 Computer Vision and Pattern Recognition. pp. 7339–7348 (2022) [1,](#page-0-0) [3,](#page-2-0) [11,](#page-10-1) [12,](#page-11-0) [13](#page-12-1) 495
- 3. Baltieri, D., Vezzani, R., Cucchiara, R.: 3dpes: 3d people dataset for surveillance 496 and forensics. In: Joint Acm Workshop on Human Gesture Behavior Understand- 497 $\frac{498}{498}$ ing (2011) [2,](#page-1-0) [6](#page-5-2) 498
- 4. Bao, L., Ma, B., Chang, H., Chen, X.: Preserving structural relationships for person 499 re-identification. In: 2019 IEEE International Conference on Multimedia & Expo 500 Workshops (ICMEW). pp. 120–125. IEEE (2019) [4](#page-3-1) 501
- 5. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: Regarding gait as a set for cross-view 502 gait recognition. In: Proceedings of the AAAI conference on artificial intelligence. 503 vol. 33, pp. 8126–8133 (2019) [10](#page-9-1) 504
- 6. Chen, D., Li, H., Xiao, T., Yi, S., Wang, X.: Video person re-identification with 505 competitive snippet-similarity aggregation and co-attentive snippet embedding. In: 506 Proceedings of the IEEE conference on computer vision and pattern recognition. 507 pp. 1169–1178 (2018) [4](#page-3-1) 508
- 7. Chen, G., Rao, Y., Lu, J., Zhou, J.: Temporal coherence or temporal motion: Which 509 is more critical for video-based person re-identification? In: Computer Vision– 510 ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro- 511 ceedings, Part VIII 16. pp. 660–676. Springer (2020) [4,](#page-3-1) [11](#page-10-1) 512
- 8. Chung, D., Tahboub, K., Delp, E.J.: A two stream siamese convolutional neural 513 network for person re-identification. In: Proceedings of the IEEE international 514 conference on computer vision. pp. 1983–1991 (2017) [4](#page-3-1) 515
- 9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, 516 T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is 517 worth 16x16 words: Transformers for image recognition at scale. arXiv preprint 518 arXiv:2010.11929 (2020) [10](#page-9-1) 519
- 10. Eom, C., Lee, G., Lee, J., Ham, B.: Video-based person re-identification with spa- 520 tial and temporal memory networks. In: 2021 IEEE/CVF International Conference 521 on Computer Vision (ICCV). pp. 12016–12025 (2021). [https://doi.org/10.1109/](https://doi.org/10.1109/ICCV48922.2021.01182) 522 [ICCV48922.2021.01182](https://doi.org/10.1109/ICCV48922.2021.01182) [3,](#page-2-0) [4,](#page-3-1) [11,](#page-10-1) [12,](#page-11-0) [13](#page-12-1) 523
- 11. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fu- 524 sion for video action recognition. In: Proceedings of the IEEE conference on com- 525 puter vision and pattern recognition. pp. 1933–1941 (2016) [4](#page-3-1) 526
- 12. Fu, Y., Wang, X., Wei, Y., Huang, T.: Sta: Spatial-temporal attention for large- 527 scale video-based person re-identification. In: Proceedings of the AAAI conference 528 on artificial intelligence. vol. 33, pp. 8287–8294 (2019) [1,](#page-0-0) [4,](#page-3-1) [11](#page-10-1) 529
- 13. Gu, X., Chang, H., Ma, B., Zhang, H., Chen, X.: Appearance-preserving 3d convo- 530 lution for video-based person re-identification. In: Computer Vision–ECCV 2020: 531 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part 532 II 16. pp. 228–243. Springer (2020) [3,](#page-2-0) [4,](#page-3-1) [11,](#page-10-1) [12,](#page-11-0) [13](#page-12-1) 533
- 14. He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning 534 for video-based person re-identification. In: Proceedings of the IEEE/CVF Inter- 535 national Conference on Computer Vision. pp. 1490–1501 (2021) [4,](#page-3-1) [11](#page-10-1) 536

- 15. Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by de- 537 scriptive and discriminative classification. In: Image Analysis: 17th Scandinavian 538 Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings 17. pp. 91–102. 539 540 Springer (2011) [2,](#page-1-0) [3,](#page-2-0) [6,](#page-5-2) [11](#page-10-1) 540
- 16. Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Vrstc: Occlusion-free video 541 person re-identification. In: CVPR. pp. 7183–7192 (2019) [11](#page-10-1) 542
- 17. Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Temporal complementary 543 learning for video person re-identification. In: ECCV. pp. 388–405 (2020) [4,](#page-3-1) [11,](#page-10-1) [12](#page-11-0) 544
- 18. Hou, R., Chang, H., Ma, B., Huang, R., Shan, S.: Bicnet-tks: Learning efficient 545 spatial-temporal representation for video person re-identification. In: Proceed- 546 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 547 (CVPR). pp. 2014–2023 (June 2021) [2,](#page-1-0) [3,](#page-2-0) [4,](#page-3-1) [11,](#page-10-1) [12,](#page-11-0) [13](#page-12-1) 548
- 19. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, 549 W.: LoRA: Low-rank adaptation of large language models. In: International Con- 550 ference on Learning Representations (2022), [https://openreview.net/forum?id=](https://openreview.net/forum?id=nZeVKeeFYf9) 551 [nZeVKeeFYf9](https://openreview.net/forum?id=nZeVKeeFYf9) [10](#page-9-1) 552
- 20. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., 553 Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video 554 dataset. arXiv preprint arXiv:1705.06950 (2017) [12](#page-11-0) 555
- 21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint 556 arXiv:1412.6980 (2014) [12](#page-11-0) 557
- 22. Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representa- 558 tions for video person re-identification. In: ICCV. pp. 3958–3967 (2019) [3,](#page-2-0) [5,](#page-4-3) [6,](#page-5-2) 559 $\frac{11}{11}$ $\frac{11}{11}$ $\frac{11}{11}$ 560 $\frac{11}{11}$ 5
- 23. Li, J., Zhang, S., Huang, T.: Multiscale 3d convolution network for video based 561 person reidentification. In: AAAI. pp. 8618–8625 (2019) [1,](#page-0-0) [4,](#page-3-1) [11](#page-10-1) 562
- 24. Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representa- 563 tions for video person re-identification. In: Proceedings of the IEEE/CVF interna- 564 tional conference on computer vision. pp. 3958–3967 (2019) [1,](#page-0-0) [11](#page-10-1) 565
- 25. Li, S., Sun, L., Li, Q.: Clip-reid: Exploiting vision-language model for image re- 566 identification without concrete text labels. arXiv preprint arXiv:2211.13977 (2022) 567 [8](#page-7-2) $2, 7, 8$ $2, 7, 8$ $2, 7, 8$ $2, 7, 8$ 568 $3, 7, 8$
- 26. Liu, H., Jie, Z., Jayashree, K., Qi, M., Jiang, J., Yan, S., Feng, J.: Video-based 569 person re-identification with accumulative motion context. IEEE transactions on 570 circuits and systems for video technology 28(10), 2788–2802 (2017) [4](#page-3-1) 571
- 27. Liu, X., Zhang, P., Lu, H.: Video-based person re-identification with long short- 572 term representation learning. In: International Conference on Image and Graphics. 573 574 pp. 55–67. Springer (2023) [11,](#page-10-1) [12](#page-11-0) 574
- 28. Liu, X., Zhang, P., Yu, C., Lu, H., Yang, X.: Watching you: Global-guided re- 575 ciprocal learning for video-based person re-identification. In: Proceedings of the 576 IEEE/CVF conference on computer vision and pattern recognition. pp. 13334– 577 13343 (2021) [11,](#page-10-1) [12](#page-11-0) 578
- 29. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., 579 Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from 580 natural language supervision. In: International conference on machine learning. pp. 581 8748–8763. PMLR (2021) [2,](#page-1-0) [7,](#page-6-1) [11,](#page-10-1) [12](#page-11-0) 582
- 30. Rasheed, H., khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Finetuned clip models 583 are efficient video learners. In: The IEEE/CVF Conference on Computer Vision 584 585 and Pattern Recognition (2023) [11,](#page-10-1) [12](#page-11-0) 585
- 31. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face 586 recognition and clustering. In: Proceedings of the IEEE conference on computer 587 vision and pattern recognition. pp. 815–823 (2015) [8](#page-7-2) 588
- 32. Song, G., Leng, B., Liu, Y., Hetang, C., Cai, S.: Region-based quality estima- 589 tion network for large-scale person re-identification. In: Proceedings of the AAAI 590 conference on artificial intelligence. vol. 32 (2018) [4](#page-3-1) 591
- 33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep- 592 tion architecture for computer vision. In: Proceedings of the IEEE conference on 593 computer vision and pattern recognition. pp. 2818–2826 (2016) [8](#page-7-2) 594
- 34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, 595 Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro- 596 597 cessing systems 30 (2017) [9,](#page-8-4) [10](#page-9-1) 597
- 35. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Tem- 598 poral segment networks: Towards good practices for deep action recognition. In: 599 European conference on computer vision. pp. 20–36. Springer (2016) [12](#page-11-0) 600
- 36. Wang, X., Zhao, R.: Person re-identification: System design and evaluation 601 overview. In: Person Re-Identification, pp. 351–370. Springer (2014) [2,](#page-1-0) [3,](#page-2-0) [5,](#page-4-3) [6,](#page-5-2) 602 $\frac{11}{603}$ $\frac{11}{603}$ $\frac{11}{603}$ and $\frac{11}{603}$ and
- 37. Wang, Y., Zhang, P., Gao, S., Geng, X., Lu, H., Wang, D.: Pyramid spatial- 604 temporal aggregation for video-based person re-identification. In: Proceedings of 605 the IEEE/CVF international conference on computer vision. pp. 12026–12035 606 (2021) [11,](#page-10-1) [12](#page-11-0) 607
- 38. Yan, Y., Qin, J., Chen, J., Liu, L., Zhu, F., Tai, Y., Shao, L.: Learning multi- 608 granular hypergraphs for video-based person re-identification. In: Proceedings of 609 the IEEE/CVF conference on computer vision and pattern recognition. pp. 2899– 610 2908 (2020) [11,](#page-10-1) [12](#page-11-0) 611
- 39. Yang, J., Zheng, W.S., Yang, Q., Chen, Y.C., Tian, Q.: Spatial-temporal graph 612 convolutional network for video-based person re-identification. In: Proceedings of 613 the IEEE/CVF conference on computer vision and pattern recognition. pp. 3289– 614 3299 (2020) [11](#page-10-1) 615
- 40. Yin, J., Wu, A., Zheng, W.S.: Fine-grained person re-identification. International 616 Journal of Computer Vision 128(6), 1654–1672 (Jun 2020). [https://doi.org/10.](https://doi.org/10.1007/s11263-019-01259-0) 617 [1007/s11263-019-01259-0](https://doi.org/10.1007/s11263-019-01259-0), <https://doi.org/10.1007/s11263-019-01259-0> [3](#page-2-0) 618
- 41. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, 619 A.J.: Deep sets. Advances in neural information processing systems 30 (2017) [10](#page-9-1) 620
- 42. Zang, X., Li, G., Gao, W.: Multidirection and multiscale pyramid in transformer 621 for video-based pedestrian retrieval. IEEE Transactions on Industrial Informatics 622 18(12), 8776–8785 (2022). <https://doi.org/10.1109/TII.2022.3151766> [4,](#page-3-1) [11,](#page-10-1) 623 [12](#page-11-0) 624
- 43. Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Multi-granularity reference-aided attentive 625 feature aggregation for video-based person re-identification. In: Proceedings of the 626 IEEE/CVF conference on computer vision and pattern recognition. pp. 10407– 627 10416 (2020) [11](#page-10-1) 628
- 44. Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q.: Mars: A video 629 benchmark for large-scale person re-identification. In: ECCV. pp. 868–884 (2016) 630 [2,](#page-1-0) [3,](#page-2-0) [4,](#page-3-1) [5,](#page-4-3) [6,](#page-5-2) [11](#page-10-1) 631
- 45. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta- 632 tion. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 633 13001–13008 (2020) [12](#page-11-0) 634

 46. Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T.: See the forest for the trees: 635 Joint spatial and temporal recurrent neural networks for video-based person re- 636 identification. In: Proceedings of the IEEE conference on computer vision and 637 pattern recognition. pp. 4747–4756 (2017) [4](#page-3-1) 638