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Abstract. In this paper, we construct a large-scale benchmark dataset005 005

for Ground-to-Aerial Video-based person Re-Identification, named G2A-006 006

VReID, which comprises 185,907 images and 5,576 tracklets, featuring007 007

2,788 distinct identities. To our knowledge, this is the first dataset for008 008

video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has009 009

the following characteristics: 1) Drastic view changes; 2) Large number010 010

of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference011 011

in resolution. Additionally, we propose a new benchmark approach for012 012

cross-platform ReID by transforming the cross-platform visual alignment013 013

problem into visual-semantic alignment through vision-language model014 014

(i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter015 015

module to adapt image-based foundation model to video ReID tasks,016 016

termed VSLA-CLIP. Besides, to further reduce the great discrepancy017 017

across the platforms, we also devise the platform-bridge prompts for018 018

efficient visual feature alignment. Extensive experiments demonstrate the019 019

superiority of the proposed method on all existing video ReID datasets020 020

and our proposed G2A-VReID dataset.021 021

Keywords: Dataset · Ground-to-Aerial · Person Re-Identification022 022

1 Introduction023 023

Video-based person Re-Identification (VReID) [2,12,23,24], has been attracting024 024

much attention in recent years, as video can provide richer information than025 025

single image. Existing research efforts on video-based ReID are mostly based on026 026

the data captured from the same platforms, such as ground surveillance cameras.027 027

Suppose in this scenario that a suspect has committed a crime in the city where028 028

abundant surveillance cameras have been deployed and escaped into the rural029 029

areas where there are no deployed ground surveillance cameras in advance. One030 030

feasible solution is sending a moving camera with the help of an airbone UAV031 031

platform. Thus, the technical crux has been turned into cross-platform video-032 032

based person ReID in aerial captured videos, with a given query video tracklet033 033

captured by ground cameras.034 034

In this paper, to meet the research need of cross-platform video person ReID,035 035

we construct a large-scale benchmark dataset named Ground-to-Aerial Video036 036

ReID (G2A-VReID). The G2A-VReID dataset consists of 185,907 images in to-037 037

tal, with 5,576 tracklets belonging to 2,788 different person IDs. Each person038 038
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ID includes two tracklets captured by the UAV and ground surveillance plat-039 039

forms, respectively. There is an average of 33.3 images for each tracklet. The040 040

scale of G2A-VReID dataset is larger than most existing video-based person041 041

ReID datasets such as MARS [44], iLIDS [36], PRID-2011 [15], etc.042 042

To capture the videos of the same person by both the ground surveillance043 043

camera and the UAV-mounted camera, we simulate the ground-to-aerial platform044 044

ReID by fixating a ground surveillance camera at a specific location, while flying045 045

a DJI consumer UAV nearby to ensure many people can be captured by both046 046

cameras. The ground camera is set at about 2.0 meters above the ground, and047 047

the flight altitudes of UAV varies from 20 meters to 60 meters. Additionally, to048 048

be more realistic, the flight mode is adjusted randomly among hovering, cruising,049 049

and rotating with diverse view angles which greatly enriches the perspectives of050 050

the dataset.051 051

Furthermore, the dataset is collected at nine different scenarios, including052 052

school campuses, subway station entrances, tourist sites, crossroads, etc. As053 053

shown in Fig. 1, the cross-platform video person ReID task is much more chal-054 054

lenging than the counterpart in single ground platform, as the tracklets captured055 055

in the ground to aerial cross-platform scenarios are featured in drastic variations056 056

of view-points, poses, and resolutions. We have evaluated nine existing video-057 057

based person ReID algorithms on our newly collected cross-platform dataset. The058 058

experimental results showed inferior performances compared with those conven-059 059

tional single-platform datasets. Due to the great challenges of drastic view, pose,060 060

and resolution changes, it is not easy to align the visual part features between061 061

the cross-platform devices, which is essential in ReID task.062 062

Recently, with the emergence of large-scale pre-trained vision-language mod-063 063

els, e.g., CLIP [29], a well-aligned visual-semantic space can be obtained through064 064

cross-modality contrastive learning of large web visual data along with high-065 065

level language descriptions. Although for the ReID task, there is no language066 066

descriptions for each person whose identity is just denoted as an index number,067 067

a set of learnable description tokens can also be introduced to roughly describe068 068

each ID [25]. In this paper, we propose to transform the cross-platform visual069 069

alignment problem into visual-semantic alignment with the help of the founda-070 070

tion model CLIP. To be concrete, a two-stage optimization strategy is utilized,071 071

which aims to learn description tokens for each ID in the first stage, and fine-072 072

tunes the Image Encoder with aligning visual embeddings to semantic features073 073

obtained through the learned description token in the second stage. Our exper-074 074

iments demonstrate that fine-tuning the Image Encoder with the constraint of075 075

visual-semantic alignment achieves competitive performance.076 076

However, there are two obvious drawbacks in adapting image-based pre-077 077

trained foundation models to video ReID tasks by simply fine-tuning. One is the078 078

huge training cost with large-scale trainable parameters, and another is that the079 079

image encoder lacks the capability of modeling inter-frame information. Many080 080

previous works [1,3,18] deem video as a stack of frames with temporal structure,081 081

and are devoted to modeling temporal features with well-designed modules. But082 082

these works ignore the complementarity of frames in a video, which proved to be083 083
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more effective in ReID task [2]. Moreover, from the aerial perspective, temporal084 084

information is limited due to severe self-obstruction. As shown in Tab. 2, tempo-085 085

ral models [10, 13, 18] show inferior performance on G2A-VReID. In this paper,086 086

we present a new perspective that regards a video clip as a disordered set and087 087

propose a parameter-efficient Video Set-Level-Adapter (VSLA) module for foun-088 088

dation modal adaptation. Concretely, VSLA consists of a Cross-Frame Attention089 089

Adapter (CFAA) and an Intra-Frame Adapter (IFA). CFAA uses cross-frame at-090 090

tention to allow information exchange between frames, enabling our model to091 091

collect complementary features in each video set for powerful video-level repre-092 092

sentations. IFA transfers the visual ability of image-based foundation model to093 093

downstream tasks, providing strong intra-frame appearance representation.094 094

Furthermore, we also propose the Platform Bridging Prompt (PBP) module095 095

to solve the visual misalignment problem in cross-platform tasks, where the096 096

prompts are adopted to provide explicit instruction to the pre-trained models097 097

for generating task-specific results. Specifically, the designed PBP is two sets098 098

of platform-specific prompts brought in Image Encoder, which aims to guide099 099

the model to focus on learning platform-invariant features, thus bridging the100 100

semantic gap of visual features between the ground and aerial platforms.101 101

In summary, the main contributions are as follows:102 102

– We are the first to collect a large-scale Ground-to-Aerial Video person ReID103 103

benchmark dataset for the task of cross-platform video-based person ReID104 104

and conducted extensive baseline methods on our dataset.105 105

– We propose to transform the essential cross-platform visual part alignment106 106

problem into visual-semantic alignment with the help of CLIP, and propose107 107

PBP to further bridge the semantic gap of visual features between the ground108 108

and aerial platforms.109 109

– We propose the Video Set-Level-Adapter to efficiently adapt pre-trained110 110

image-based visual foundation model to the video ReID tasks. Our meth-111 111

ods achieves state-of-the-art performances on three widely used video ReID112 112

datasets and our cross-platform benchmark dataset.113 113

2 Related Works114 114

In this section, we provide a concise review of two sets of works closely related115 115

to our research.116 116

Video ReID Datasets. Existing works on person ReID can be categorized117 117

into image-based ReID and video-based ReID. For video-based ReID, the pop-118 118

ular datasets include PRID-2011 [15], iLIDS [36], MARS [44] and LS-VID [22],119 119

etc. PRID-2011 comprises multiple person trajectories captured by two static120 120

surveillance cameras, encompassing only 400 sequences involving 200 individu-121 121

als. In contrast, LS-VID is a large-scale benchmark featuring 14,943 sequences122 122

of 3,772 persons, with videos captured at various times throughout the day.123 123

Many works have achieved superior performances on these datasets. Specifically,124 124

FGReID [40] achieved Rank-1 at 96.1% on PRID-2011, SINet [2] got 92.5% of125 125
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Rank-1 on iLIDS and DenseIL [14] achieved an mAP of 87.0% on MARS, indicat-126 126

ing a saturation trend on these datasets. The existing datasets are all captured127 127

with a single platform, i.e. ground surveillance cameras, while we aim to collect a128 128

Ground-to-Aerial cross-platform video ReID dataset to support the development129 129

of this field.130 130

Video ReID Methods. The object processed in video-based person ReID is131 131

a video composed of a sequence of person images. Videos contain richer temporal132 132

and spatial information than images. Previous works used 3D CNNs [1, 13, 23],133 133

temporal weighting [6,12,13,44,46], optical flow [8,11,26] and many other meth-134 134

ods [7, 10, 17, 18] to model the spatiotemporal information of video sequences135 135

to alleviate the negative effects of appearance change, occlusion, pose varia-136 136

tion, etc. For 3D CNNs, STRF [1] proposed a trainable unit with negligible137 137

computational overhead, which is used in conjunction with 3D-CNN to learn138 138

discriminate 3D features. For temporal weighting, AP3D [13] assigns attention139 139

scores for each spatial region to achieve discriminative parts mining and frame140 140

selection. Optical flow refers to the movement of target pixels in an image due141 141

to the movement of objects in the image or the movement of the camera in two142 142

consecutive frames. STA [12] makes use of color and optical flow information in143 143

order to capture appearance and motion information. An essential topic to im-144 144

prove the performance of video-based ReID is the visual part alignment between145 145

query and gallery videos. SRL [4] learns the structural relationship between lo-146 146

cal regions in an image and achieves the alignment of videos. RQEN [32] solves147 147

the problem of misalignment caused by the difference in image quality between148 148

different regions by compensating between local regions. PiT [42] divides each149 149

frame into small patches of different granularity in different directions, allowing150 150

the model to align two videos with multi-scale local information. It is relatively151 151

easy to align the visual part features between the query and gallery videos for152 152

these methods by utilizing a simple stripe partition, as the variations of view,153 153

pose, and resolution are limited among the single ground cameras.154 154

To solve the severe misalignment of visual features in cross-platform tasks,155 155

we resort to visual-semantic alignment of the CLIP model to align the cross-156 156

platform person features.157 157

3 Dataset158 158

In this section, we first introduce how we collect and annotate our G2A-VReID159 159

dataset in Sec. 3.1 and Sec. 3.2. Then, we make comparisons with other datasets160 160

and highlight the key characteristics of G2A-VReID in Sec. 3.3.161 161

3.1 Dataset Collection162 162

To increase the richness of data and make it closer to the real environment. The163 163

videos are captured from 9 different scenarios, including library, crossroads, bus164 164

stop, tourist sites, etc. Following the principle of protecting public privacy, we165 165

post notes to inform pedestrians of the video capture area in the shooting stage,166 166
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Fig. 1: Visualization of proposed
G2A-VReID at different heights.
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Fig. 2: The distributions of sequence length.

and the dataset will be licensed for non-profit academic research only. Ground167 167

surveillance cameras are used to shoot videos from the ground perspective, and a168 168

DJI Mavic UAV is adopted to gather videos from the sky perspective. In detail,169 169

the surveillance camera is fixed at a height of about two meters above the ground,170 170

and the UAV flies at different heights from 20 to 60 meters. The UAV flies in a171 171

mode of hovering, cruising, and rotating, making the captured persons contain172 172

richer perspectives.173 173

We cropped the captured video at intervals of 0.5 seconds to generate 31,770174 174

frames of scene images. Some of them are shown in Fig. 1. We can see that there175 175

are great differences in the viewing perspective and resolution of images taken176 176

on different platforms, making it more challenging than existing datasets.177 177

3.2 Annotation178 178

To the best of our knowledge, there is not exist ground-to-aerial cross-platform179 179

video-based person Re-ID dataset. One reason is that it takes a lot of effort to180 180

annotate a large-scale dataset. We invited 40 experienced annotators and took181 181

two weeks to complete the annotation process. During annotation, all persons182 182

appeared in the videos are marked with boundary boxes, and each person is183 183

cropped from the scene image according to the box. At the same time, we use184 184

mosaic to mask the clear face information for privacy protection. Then, the185 185

same people in the UAV and surveillance videos are associated and assigned186 186

unique IDs. Next, we combine all the images of a person in one camera into187 187

one trajectory. Thus, each person has at least two trajectories, one from the188 188

surveillance camera and the other from the UAV. Finally, we annotated 185,907189 189

images of 2,788 identities, corresponding to 5,576 tracklets. Fig. 2 shows the190 190

distributions of sequence length.191 191

3.3 Characteristics of Our G2A-VReID192 192

Compared with existing VReID datasets [22,36,44] , the characteristics of G2A-193 193

VReID are as follows:194 194

Drastic view changes. The tracklets in the query and gallery sets are195 195

captured from different types of cameras, specifically ground and aerial views.196 196
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Table 1: Comparison of G2A-VReID with other Video-ReID datasets. CWM denotes
the camera working mode. AD is the average duration of each video sequence.

Datasets G2A-VReID LS-VID [22] Mars [44] iLIDS [36] PRID-2011 [15] 3DPeS [3]

identities 2,788 3,772 1,261 300 200 200
tracklets 5,576 14,943 20,715 600 400 1,000
images 185,907 2,982,685 1,067,516 42,460 40,033 200,000
AD (s) 16.7 6.7 5.6 2.4 3.3 6.7
camera 2 15 6 2 2 8
view ground & sky ground ground ground ground ground
CWM moving fixed fixed fixed fixed fixed

Consequently, the transitions between the views in the query and gallery track-197 197

lets are significantly different, compared to the current video-based person ReID198 198

datasets.199 199

Large number of annotated identities. Our G2A-VReID consists of200 200

2,788 person IDs and 185,907 images, corresponding to 5,576 tracklets. The201 201

number of identities is significantly higher than all existing datasets except LS-202 202

VID [22], as shown in Tab. 1.203 203

Rich outdoor scenarios with large view changes. The G2A-VReID204 204

consists of footage from nine diverse scenarios, including libraries, bus stops,205 205

subway station entrances, tourist sites, crossroads, and more. This diversity206 206

enables G2A-VReID to accurately represent realistic environments for person207 207

ReID. In contrast, the videos from Mars [44] are captured in a university cam-208 208

pus, while iLIDS [36] only contains videos collected from an airport arrival hall.209 209

These datasets exhibit comparatively limited scenarios in terms of environmental210 210

diversity.211 211

Huge difference in resolution. As depicted in Fig. 1, the height of the212 212

UAV-mounted camera varies significantly, spanning from 20 to 60 meters, leading213 213

to varying resolutions of individuals captured in each scene. The width distri-214 214

bution of individuals in images captured by ground cameras primarily ranges215 215

from 10 to 70 pixels. Whereas, in UAV-captured images, this range is narrower216 216

from 5 to 35 pixels. This discrepancy in resolution distribution between query217 217

and gallery images introduce much complexity to the task of ground-to-aerial218 218

video-based person ReID.219 219

4 Approach220 220

Fig. 3 illustrates the overall architecture of our proposed method. Our approach221 221

focuses on cross-platform video person ReID and aims to parameter-efficiently222 222

adapt pre-trained image-based visual foundation models to video person ReID223 223

tasks. To bridge visual misalignment in cross-platform tasks, we propose to trans-224 224

form the fundamental visual alignment problem into visual-semantic alignment225 225

based on CLIP. Specifically, we design a simple baseline method, named FT-226 226

CLIP, through fine-tuning the Image Encoder of CLIP. A two-stage training227 227

strategy is employed to optimize our approach. ID-specific description tokens228 228

are learned from samples originating from various platforms in the first train-229 229

ing stage. Then in the second stage, visual features extracted from different230 230

platforms are aligned with the semantic features obtained through the learned231 231
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Fig. 3: Overview of our proposed framework. A two-stage training strategy is employed
to optimize our approach: ID-specific description and shared text prompt are learned
in stage one (left) while freezing Image Encoder and Text Encoder; Video Set-Level-
Adapter and PBP are introduced and trained in the second stage (right) while freezing
other parameters.

description tokens. Our work shows that FT-CLIP with the constraint of visual-232 232

semantic alignment yields competitive performance, but it is not parameter ef-233 233

ficient and ignores inter-frame information. Therefore, we propose the Video234 234

Set-Level-Adapter for efficient model tuning, termed as VSLA-CLIP, which out-235 235

performs FT-CLIP while utilizing fewer parameters. To further bridge the se-236 236

mantic gap in cross-platform tasks, we propose a prompt-based approach called237 237

Platform-Bridge Prompt (PBP).238 238

4.1 Revisiting CLIP-ReID239 239

CLIP-ReID [25] is the pioneering approach that employs pre-trained vision-240 240

language models for image-based ReID. CLIP [29] relies on text labels to gen-241 241

erate text descriptions. However, the labels in ReID tasks are indexes rather242 242

than specific text, which lacks the ability to depict detailed information about243 243

the corresponding persons. To solve this problem, CLIP-ReID uses a series of244 244

ID-specific learnable tokens to learn text descriptions and adapts a two-stage245 245

optimization strategy.246 246

In the first training stage, only ID-specific tokens are optimized to learn text247 247

descriptions for each ID. Text T D that feeds into Text-Encoder Et(·) is “a photo248 248

of [X]1...[X]M person", where [X]i is the learnable tokens. Text embedding T249 249

and image embedding I are obtained by:250 250

T = Et(T D), I = Ei(I), (1)251 251

where Ei(·) is the Image Encoder. The image-to-text contrastive loss Li2t and252 252

text-to-image contrastive loss Lt2i are used to optimize [X]1...[X]M. Since there253 253

are samples with the same ID in a batch, Lt2i in CLIP-ReID is defined as:254 254

Lt2i(yi) =
−1

|P (yi)|
∑

p∈P (yi)

log
exp(s(Ip,Tyi))∑B
a=1 exp(s(Ia,Tyi

))
, (2)255 255
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where Tyi
represents the text embedding of ID-yi, P (yi) = {p ∈ {1...B}, yp = yi}256 256

is the set of positive samples for Tyi
and B represents the batch size. Li2t is257 257

similar to Lt2i. The overall loss function of stage one Lstage1 is as follows:258 258

Lstage1 = Li2t + Lt2i. (3)259 259

In the second stage, the ID-specific tokens and Text-Encoder are frozen.260 260

Triplet loss Ltri [31], identity loss Lid, and image-to-text cross-entropy loss Li2tce261 261

are used to optimize CLIP Image Encoder. The Li2tce is defined as follows:262 262

Li2tce(y) =

N∑
k=1

−qk log
exp(s(Iy,Tyk

))∑N
ya=1 exp(s(Iy,Tya))

, (4)263 263

where qk denotes smooth label [33] in the target distribution of the kth ID, s264 264

represents cosine similarity, and N is the number of identities.265 265

4.2 Visual-Semantic Alignment266 266

We propose to transform the fundamental challenge of cross-platform visual267 267

alignment into visual-semantic alignment, and explore the efficacy of fine-tuning268 268

to adapt CLIP to video-based ReID tasks with visual-semantic alignment, named269 269

the model FT-CLIP. As shown in Fig. 3 (left), learnable ID-specific description270 270

tokens [S]i and shared text prompts [P]i are inserted into the Text-Encoder. All271 271

the tokens that feed into the Text-Encoder are concatenated as “[[P]1...[P]n/2 :272 272

[S]1...[S]M : [P]n/2+1...[P]n]". Semantic features T can be obtained by:273 273

T = Et([[P]1...[P]n/2 : [S]1...[S]M : [P]n/2+1...[P]n]), (5)274 274

where [· : ·] represents the concatenating operation, the dimensions of [P]i and275 275

[S]i are the same as that of the word embedding.276 276

Inspired by CLIP-ReID [25], we adopt a two-stage optimization strategy. In277 277

the first optimization stage, we freeze both the Image Encoder and Text Encoder,278 278

using loss function Lstage1 in Eq. (3) to optimize ID-specific description tokens279 279

and the shared text prompts. In the second optimization stage, Image Encoder280 280

is trained to align the video embeddings to semantic features. Given a video281 281

sample Vi ∈ RT×H×W×3 with T frames, the CLIP image encoder encodes the T282 282

frames independently and mean-pooling is used to fuse the frame embeddings.283 283

Visual embeddings Vi can be obtained by:284 284

Vi =
1

T

T∑
j

Ei(Vij), (6)285 285

where Vij represents the jth frame of Vi. The visual to semantic cross-entropy286 286

loss Lv2sce, Li2t and Lt2i are adopted to align visual embeddings to semantic287 287

features. Lv2sce is similar to Li2tce, defined as:288 288

Lv2sce(i) =

N∑
k=1

−qk log
exp(s(Vi,Tyk

))∑N
yj=1 exp(s(Vi,Tyj

))
, (7)289 289
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where qk represents the soft label in the target distribution, and N is the number290 290

of identities. Meanwhile, triplet loss Ltri with soft-margin and ID loss Lid are291 291

also used:292 292

Ltri = max(dp − dn + θ, 0), (8)293 293

294 294

Lid =

N∑
k=1

−qk log(pk), (9)295 295

where θ is the soft-margin of Ltri, pk represents ID prediction logits of class k,296 296

dp and dn are feature distances of positive pair and negative pair. The overall297 297

loss Lstage2 is defined as follows:298 298

Lstage2 = Lv2sce + βLtri + γLid + δLi2t + ϵLt2i, (10)299 299

where β, γ, δ and ϵ balance the importance of the relative losses.300 300

4.3 Video Set-Level-Adapter for Efficient Model Tuning301 301

Video ReID requires the model to learn appearance representation in both intra-302 302

frame and inter-frames. We present a novel perspective, where a video sample303 303

is regarded as a frame set Si = {Vij |j = 1, 2, ..., n} consisting of independent304 304

frames, and propose an efficient Video Set-Level-Adapter (VSLA) module. The305 305

VSLA consists of two components: an Intra-Frame Adapter (IFA, Fig. 3 (a))306 306

and a Cross-Frame Attention Adapter (CFAA, Fig. 3 (b)). IFA is designed to307 307

parameter-efficiently adapt the pre-trained visual foundation model to down-308 308

stream tasks, it takes raw frames as input and provides image-level appearance309 309

representation. CFAA takes a set of frames as input, aggregating the inter-frame310 310

complementary information for more powerful video-level representations.311 311

IFA consists of two mapping matrices in a bottleneck structure. It runs in312 312

parallel with MLP blocks within each layer of the Image Encoder. As shown in313 313

Fig. 3, the Image Encoder in CLIP (ViT-Base-16) consists of alternating layers314 314

of Multi-Head Self-Attention (MSA) [34], Multi-Layer Perceptron (MLP) and315 315

LayerNorm (LN), which can be formulated as:316 316

x
′

i = MSA(LN(xi−1)) + xi−1, (11)317 317

xi = MLP(LN(x
′

i)) + x
′

i. (12)318 318

We denote the input of IFA as x′
i ∈ RT×(N+1)×D, where N = HW/P 2, D319 319

represents the dimension and T is the number of frames. The down-projection320 320

layer Wdown projects x′
i to x′′

i ∈ RT×(N+1)×α, where α is a hyper-parameter.321 321

Then x′′
i goes through a GELU σ and up-projection layer Wup. The process can322 322

be formulated as:323 323

IFA(x
′

i) = σ(x
′

iWdown)Wup, (13)324 324

325 325

xi = MLP(LN(x
′

i)) + x
′

i + IFA(x
′

i). (14)326 326
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Unlike LoRA [19], which adds trainable pairs of rank decomposition matrices327 327

in parallel to every pre-existing weight matrix, IFA is solely in parallel with328 328

MLP. Therefore, adopting IFA results in far fewer parameters, accounting for329 329

only 5.5% (α = 256) of the whole Image Encoder (ViT-Base-16).330 330

CFAA is also a bottleneck architecture with a cross-frame attention layer in331 331

the middle. Our model M(·) with CFAA is immune to frame ordering [5], which332 332

can be formulated as:333 333

M({Vij |j = 1, 2, ..., n}) = M({Viπ(j)|j = 1, 2, ..., n}), (15)334 334

where π is any permutation [41]. We denote the input of CFAA as xi−1 ∈335 335

RT×(N+1)×D, the down-projection layer projects xi−1 to x′
i−1 ∈ RT×(N+1)×α.336 336

The cross-frame attention layer has the same structure as Multi-Head Self-337 337

Attention (MSA) [34]. To aggregate the complementary information among T338 338

frames, we reshape the input of cross-frame attention layer x′
i−1 to x′T

i−1 ∈339 339

R(N+1)×T×α, and the attention is done in the second dimension of x′T
i−1, thus en-340 340

abling visual information to exchange across frames. Then, we restore the output341 341

of cross-frame attention layer from x′′T
i−1 ∈ R(N+1)×T×α to x′′

i−1 ∈ RT×(N+1)×α,342 342

with x′′
i−1 passing through up-projection layer. For CFAA, x

′

i in Eq.(11) can be343 343

obtained by:344 344

x
′

i = MSA(LN(xi−1)) + xi−1 + CFAA(xi−1). (16)345 345

4.4 Platform-Bridge Prompt346 346

Making visual embeddings align with semantic features could effectively alleviate347 347

the feature misalignment in cross-platform ReID tasks, but yet to be improved.348 348

We additionally introduce Platform-Bridge Prompt (PBP) to bridge platform349 349

differences further. PBP is designed to guide model focusing on platform dif-350 350

ferences. As illustrated in Fig. 3, we add a series of platform-specific learnable351 351

prompts in the Image Encoder. Specifically, there are only two sets of prompts,352 352

one corresponding to the ground platform and the other to the UAV platform.353 353

Applying PBP can be viewed as changing the inputs of each MSA layer in Vision354 354

Transformer (ViT [9]). We denote the inputs of the MSA layer as h ∈ R(N+1)×D,355 355

where N = HW/P 2 and D represents the dimension. The MSA layer with PBP356 356

can be formulated as follows,357 357

fk(h,pk) =


MSAk([h : pground

k ]) if k < d and h ∈ Setground

MSAk([h : puav
k ]) if k < d and h ∈ Setuav

MSAk(h) if k ≥ d,

(17)358 358

where pground
k ∈ Rl×D,puav

k ∈ Rl×D, d and l are the depth and length of PBP,359 359

[:] denotes the concatenation operation, MSAk represents the kth MSA layer in360 360

Image Encoder, Setuav and Setground are two sets containing the samples from361 361

the UAV and the samples from the ground platform respectively.362 362
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Table 2: Comparison with state-of-the-art methods. † represents the model initialized
by the weight of CLIP [29] released by OpenAI, and ‡ represents the model initialized
by weight of ViFi-CLIP [30]. We use bold to indicate the best results of our methods,
and underlines to highlight the best results of other methods. On all datasets, our
method outperforms the comparisons significantly.

Method MARS LS-VID iLIDS G2A-VReID
mAP rank-1 mAP rank-1 rank-1 mAP rank-1

STA [12] 80.8 86.3 - - - - -
M3D [23] 74.1 84.4 40.1 57.7 74 - -
GLTR [24] 78.5 87.0 44.3 63.1 86 - -

VRSTC [16] 82.3 88.5 - - 83.4 - -
AP3D [13] 85.1 90.1 73.2 84.5 88.7 67.7 57.5

STGCN [39] 83.7 90.0 - - - - -
MGH [38] 85.8 90.0 - - 85.6 76.7 69.9

MG-RAFA [43] 85.9 88.8 - - 88.6 - -
AFA [7] 82.9 90.2 - - 88.5 - -

TCLNet [17] 85.1 89.8 70.3 81.5 86.6 65.4 54.7
STRF [1] 86.1 90.3 - - 89.3 - -
GRL [28] 84.8 91.0 - - 90.4 52.8 41.4

DenseIL [14] 87.0 90.8 - - 92 - -
BiCnet-TKS [18] 86.0 90.2 75.1 84.6 - 63.4 51.7

PSTA [37] 85.8 91.5 - - - 64.6 54.5
STMN [10] 84.5 90.5 69.2 82.1 91.5 66.7 56.1
PiT [42] - 90.2 - - 92.1 76.3 67.7
SINet [2] 86.2 91.0 79.6 87.4 92.5 74.5 65.6

LSTRL [27] 86.8 91.6 82.4 89.8 92.2 - -

FT-CLIP‡ 88.00 91.62 84.07 90.77 94.00 78.11 69.32

VSLA-CLIP† 88.22 90.91 84.05 90.54 95.33 79.14 71.64
VSLA-CLIP‡ 88.60 91.82 85.20 91.66 95.33 79.70 72.55

5 Experiments363 363

In this section, we first introduce the evaluation protocols and implementation364 364

details. Subsequently, we compare our proposed methods with state-of-the-art365 365

algorithms. Finally, ablation studies are conducted to investigate the contribu-366 366

tion of each component.367 367

5.1 Datasets and Evaluation Metrics368 368

We conduct experiments on our G2A-VReID and three widely used video person369 369

ReID datasets, i.e., iLIDS [36], Mars [44], and LS-VID [22]. For G2A-VReID,370 370

we roughly divide 2788 identities into training and test sets at a ratio of 1 : 2,371 371

similar to that in LS-VID [22]. Therefore, there are 930 identities with 1860372 372

tracklets in training set and 1858 identities with 3716 tracklets in the testing373 373

set. During the evaluation, we keep the cross-camera search paradigm in ReID374 374

task [15,22,36,44]. Query and gallery are composed of video sequences from the375 375

ground and UAV cameras respectively, making G2A-VReID more challenging376 376

than other datasets.377 377

We employ two standard metrics to evaluate the performance of our model,378 378

i.e., Cumulative Matching Characteristic(CMC) at Rank-1 and mean average379 379

precision (mAP).380 380
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5.2 Implementation Details381 381

ViT-Base-16 [29] is selected as the Image Encoder. The initial weights are chosen382 382

as that of ViFi-CLIP [30], whose Image Encoder and Text Encoder have been383 383

fine-tuned on the extensive action recognition dataset Kinetics-400 [20]. Sparse384 384

temporal sampling strategy [35] is used to generate a clip containing 8 frames,385 385

with each frame resized to 256×128. We randomly disrupt the order of the frames386 386

in each clip. Each batch has 32 clips corresponding to 8 identities. Adam [21]387 387

optimizer is used in both stages. In the first training stage, we optimize the388 388

ID-specific description tokens and shared text prompts with a learning rate of389 389

3.5 × 10−4, while freezing other parameters. In the second training stage, we390 390

adopt the initial learning rate 5×10−6 with decaying by 0.1 and 0.01 at the 60th391 391

and 90th epoch for FT-CLIP, and the initial learning rate 1×10−4 with decaying392 392

by 0.1 and 0.01 at the 60th and 90th epoch for VSLA-CLIP. The margin θ of393 393

triplet loss in Eq. (8) is set as 0.3, the β, γ, δ and ϵ in Eq. (10) are 1.0, 0.25, 1.0394 394

and 1.0, respectively. Each image is padded with 10 pixels and augmented with395 395

random cropping, horizontal flipping, and erasing [45].396 396

5.3 Comparison with State-of-the-Art Methods397 397

On G2A-VReID Dataset. We comprehensively evaluate nine state-of-the-art398 398

methods [2, 10, 13, 17, 18, 28, 37, 38, 42] on G2A-VReID, and report the results399 399

in Tab. 2. As can be seen that, MGH [38] and PiT [42] showed superior per-400 400

formances on our G2A-VReID dataset, i.e. MGH achieves 76.7% on mAP and401 401

69.9% on Rank-1, surpassing other models with a large margin. We attribute402 402

this to the careful visual alignment strategy adopted by MGH and PiT, which403 403

involves splitting the full image into vertical or horizontal stripes and aiming to404 404

align the stripes. This strategy mitigates the challenges of self-occlusion inherent405 405

in the UAV perspective. Our method, extracting description tokens for each per-406 406

son and aligning visual embeddings with semantic features, effectively solves the407 407

cross-platform visual misalignment problem. Our VSLA-CLIP‡ achieves 79.70%408 408

mAP and 72.55% Rank-1 on G2A-VReID, surpassing MGH by 3.0% at mAP409 409

and 2.65% at Rank-1.410 410

On All Video ReID Dataset. As shown in Tab. 2, all the variants of411 411

our methods with aligning visual embeddings to semantic features, show consis-412 412

tent improvement on all datasets. Especially, our method achieves 85.20% mAP413 413

and 91.66% Rank-1 on the challenging LS-VID dataset, which greatly improves414 414

the mAP by 2.80% and the Rank-1 by 1.86% compared with the state-of-the-415 415

art LSTRL [27]. 2) Models initialized by weights of ViFi-CLIP (ViFi-weight) are416 416

marked as ‡, and it is effective compared with the original model weights released417 417

by Open AI (marked as †). VSLA-CLIP initialized with ViFi-Weight improves418 418

the performance significantly by 1.15% mAP on LS-VID. 3) It is worth not-419 419

ing that VSLA-CLIP shows better performance than fine-tuning the whole Im-420 420

age Encoder (FT-CLIP), with far fewer tunable parameters. Specifically, VSLA-421 421

CLIP‡ outperforms the FT-CLIP‡ by 1.59% mAP on G2A-VReID with tuning422 422

parameters (14.5M vs 88.0M).423 423
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Table 3: Effectiveness of proposed components and comparison of the number of
tunable parameters. baseline represents training FT-CLIP‡ without Lv2sce in Eq.(7),
VSA is Visual-Semantic Alignment, IFA represents Intra-Frame Adapter, CFAA is
Cross-Frame Attention Adapter and PBP is Platform Bridge Prompt.

Methods Overall Tunable LS-VID G2A-VReID
Param(M) Param (M) mAP rank-1 mAP rank-1

AP3D [13] 34.0 24.9 73.2 84.5 67.7 57.5
BiCnet-TKS [18] 33.7 29.3 75.1 84.6 63.4 51.7
STMN [10] 90.9 87.0 69.2 82.1 66.7 56.1
SINet [2] 33.7 27.3 79.6 87.1 74.5 65.6

baseline 86.1 86.1 76.10 84.26 72.80 63.62
baseline+VSA (FT-CLIP‡) 127.4 88.0 84.07 90.77 78.11 69.32

IFA 90.8 4.7 77.31 84.86 73.82 65.12
IFA+VSA 132.1 6.6 84.16 90.94 79.01 71.67
IFA+VSA+CFAA (VSLA-CLIP‡) 140.0 14.5 85.20 91.66 79.70 72.55
IFA+VSA+CFAA+PBP 140.0 14.5 - - 81.29 74.27

Our experiments show that adapting pre-trained image-based models to video424 424

ReID tasks with the Video Set-Level-Adapter is both effective and efficient,425 425

setting a new baseline method for research endeavors in this field.426 426

5.4 Ablation Study427 427

To demonstrate the effectiveness of our proposed components in Sec.4, we con-428 428

duct ablation studies and compare our method with four other methods.429 429

Effectiveness of Visual-Semantic Alignment. To verify the effectiveness430 430

of Visual-Semantic Alignment, we first fine-tune the Image Encoder by directly431 431

using two common losses (Ltri and Lid in Eq.(10)) in ReID task, and set this432 432

model as our baseline. As shown in Tab. 3, Visual-Semantic Alignment is effective433 433

for both finetuning-based methods (FT-CLIP‡ vs. baseline) and adapter-based434 434

methods (IFA+VSA vs. IFA). In addition, we conduct ablation experiments to435 435

analyze three loss functions for visual-semantic alignment. As shown in Tab. 5,436 436

when Li2t, Lt2i and Lv2sce are used jointly, our model achieves the best results437 437

on LS-VID.438 438

Effectiveness of Video Set-Level-Adapter. Our goal for proposing the439 439

Video Set-Level-Adapter is to efficiently adapt pre-trained image-based visual440 440

foundation mode to video-based ReID tasks. Considering that the Video Set-441 441

Level-Adapter (VSLA) contains two modules, i.e., an Intra-Frame Adapter (IFA)442 442

and a Cross-Frame Attention Adapter (CFAA), we perform ablation experiments443 443

separately to verify the effectiveness of each module. As shown in Tab. 3, IFA444 444

surpasses the full fine-tuned baseline method (77.31% vs. 76.10% mAP on LS-445 445

VID) with significantly less number of tunable parameters (4.7M vs. 86.1M).446 446

In addition, CFAA further improves model performance (85.20% vs. 84.16%447 447

mAP on LS-VID) while also using a small number of tunable parameters, which448 448

indicates that regarding video sequences as a set is effective in Video-based ReID449 449

tasks, providing a new solution for adapting Image-based foundation models to450 450

video-based tasks.451 451

We also analyze the hyper-parameter α introduced in Sec. 4.3, which deter-452 452

mines model’s complexity and the number of training parameters. We set α to be453 453
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Table 4: Effect of α of Intra-Frame Adapter and
Cross-Frame Attention Adapter on LS-VID. TP
represents the tunable parameter.

α
TP (M) LS-VID

IFA CFAA mAP rank-1
64 1.2 1.4 79.58 86.71
128 2.4 3.2 83.64 90.00
256 4.7 7.9 85.20 91.66
384 7.1 14.2 85.09 91.49

Table 5: Ablation experiments for
the losses used for Visual-Semantic
Alignment on LS-VID.

Lv2sce Li2t Lt2i mAP
✓ 84.73

✓ 84.29
✓ 84.45

✓ ✓ 84.71
✓ ✓ ✓ 85.20

64, 128, 256, and 384 respectively. As presented in Tab. 4, the performances tend454 454

to improve with increasing α, and achieves the best mAP at α = 256. Therefore,455 455

we fix α to be 256 for other datasets. At this setting, the VSLA module con-456 456

tains only approximately 12.6 million parameters parameters, and VSLA-CLIP457 457

achieves 85.20% mAP on LS-VID, surpassing FT-CLIP by 1.13%.458 458
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Fig. 4: Analysis on the depth and length of
PBP on our G2A-VReID.

Effectiveness of PBP. The459 459

Platform Bridge Prompt (PBP)460 460

offers meticulous instructions to461 461

enable models to discern differ-462 462

ences across platforms. It adeptly463 463

steers the model towards obtaining464 464

precise and targeted information,465 465

thereby bridging the semantic gap466 466

in visual features. The depth d and467 467

length l are two hyper-parameters468 468

in PBP, which are introduced in469 469

Sec. 4.4. To analyze the impact of470 470

these two parameters on the model, we use grid-search to explore the impact of471 471

different value combinations on the model performance. The results for various472 472

parameter combinations of the model are presented in Fig. 4, and the optimal473 473

performance is achieved when d = 3 and l = 16.474 474

6 Conclusion475 475

In this paper, we construct a large-scale benchmark dataset for cross-platform476 476

video person ReID, which contains 5,576 tracklets of 2788 IDs and can serve477 477

as a potential complement to current ground surveillance system. Besides, we478 478

also propose a baseline method solving cross-platform visual misalignment prob-479 479

lem by transforming the visual alignment problem into visual-semantic align-480 480

ment through the vision-language model (i.e., CLIP) and using platform-specific481 481

prompts. To efficiently and effectively adapt the pre-trained image-based visual482 482

foundation model to Video ReID, We propose a Video Set-Level-Adapter module,483 483

which aggregates the inter-frame complementary information for more powerful484 484

video-level representations with only 12.6 million trainable parameters. Experi-485 485

mental results demonstrate that our proposed methods achieve state-of-the-art486 486

performance and will be a new trend for cross-platform video ReID tasks.487 487
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