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Abstract—Semantic segmentation is a fundamental task in
computer vision and finds extensive applications in scene un-
derstanding, medical image analysis, and remote sensing. With
the advent of deep learning, significant advancements have been
made in segmentation tasks. However, deep learning models
require a substantial amount of labeled data for training,
and accurately annotating datasets is labor-intensive and costly.
Recently, numerous studies have explored the semantic segmen-
tation task through the lens of semi-supervised learning, with the
pseudo-labeling (PL) method emerging as a straightforward and
widely applicable approach. This paper provides a comprehensive
review and analysis of various PL methods and their applications
in semi-supervised semantic segmentation (SSSS) from multiple
angles. Initially, it captures the essence of individual model self-
training and the collaborative training of multiple models from a
model-centric viewpoint. Next, it explores strategies for refining
or dismissing unreliable methods. Then, it categorizes techniques
for addressing noisy PL data and inspects improvements in PL
methods from the perspective of data augmentation. It further
provides insights into optimization strategies. Furthermore, it
examines PL methods from an application-oriented standpoint,
such as in medical image segmentation and remote sensing
image segmentation. Lastly, this paper evaluates the performance
of cutting-edge methods on public datasets and concludes by
discussing the challenges and potential directions for future
research.

Index Terms—Semi-supervised semantic segmentation, pseudo-
labeling, semi-supervised learning

I. INTRODUCTION

SEMANTIC segmentation is a traditional and significant
area within computer vision, focusing on classifying all

pixels in an image based on their semantic content. In recent
years, many successful studies have emerged in this field,
with diverse applications in specific domains, such as natural
image [1]–[3], medical image [4]–[6], and remote sensing
image [7]–[10] analysis, driving scene segmentation [11]–[13],
and point cloud segmentation [14]–[16].

The integration of deep learning has greatly improved the
efficiency of semantic segmentation tasks. However, deep
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Fig. 1: The plainest process of SSSS with the pseudo-labeling
method. The acquisition and qualification of pseudo-labels are
the main focus of the framework.

learning requires a large amount of labeled data to train
effective models. Despite the ease of acquiring vast amounts of
raw data nowadays, manually labeling images pixel by pixel is
arduous and time-intensive and requires considerable manual
effort. Utilizing the Cityscape dataset [17] as a representa-
tive case, annotation, and quality control required more than
1.5h on average for a single image. Consequently, effectively
training models with insufficient annotations for open-world
applications poses a significant challenge. To address this
issue, researchers have explored integrating methods such as
weakly supervised learning [18]–[22] or unsupervised learning
[23]–[27]. Generally, semi-supervised learning (SSL) [28]–
[30] provides an advantage by leveraging both labeled and
unlabeled datasets.

Semi-supervised semantic segmentation (SSSS) aims to
develop a model that can effectively utilize limited labeled
data while extracting valuable insights from a vast amount of
unlabeled data. With the rapid advancement of deep learning
models in visual and linguistic fields, numerous groundbreak-
ing solutions have been introduced to tackle SSSS tasks.
In Fig. 2, a thorough overview of the development trends
and future directions for SSSS is elaborated. These solutions
can be broadly categorized into pseudo labeling (PL) [31]–
[33], consistency regularization [34]–[36], adversarial training
[37], [38], contrastive learning [39]–[42], and hybrid ap-
proaches [43]–[45]. Among these methods, pseudo-labeling is
a well-established technique, which is increasingly promising
due to its stability, interpretability, and ease of implementation.
It was first introduced in [46] and has gained traction in
recent computer vision research, including image classification
[47], object detection [48], and semantic segmentation [49].
In addition, the PL has shown potential in improving model
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Fig. 2: The development trends of semi-supervised semantic segmentation. In the upper half, we provide solutions for SOTA
retrieval performance on four more commonly used benchmark datasets from 2018 to 2024, respectively (the proportion in the
box is the proportion of labeled data). As for the second half, we provide an overview of relevant technology trends in recent
years and point out possible future research directions (best viewed in colors).

performance in other domains, including medical imaging
[50], remote sensing [51], natural language processing [52],
autonomous driving [53], speech recognition [54], and action
recognition [55], where large-scale labeled data may be lim-
ited. By utilizing unlabeled data, PL techniques can develop
more robust and versatile models across different tasks. The
detailed process of PL for SSSS is illustrated in Fig. 1. Several
reviews have been conducted on subjects like SSL [56] and
SSSS [57], [58], yet comprehensive summaries and analyses
for PL methods are still missing. The PL offers significant
advantages in leveraging large amounts of unlabelled data, but
there are persistent challenges, such as ensuring the quality
and accuracy of generated pseudo-labels and addressing the
noise and overfitting issues [46], [59] that pseudo-labels might
introduce. Given this context, we are driven to perform a
current and thorough survey to encapsulate the latest solutions
in PL for SSSS, examine existing challenges, spark new
research ideas, explore integration with other techniques, and
discuss future directions to encourage this technology’s broad
adoption further.

We present a comprehensive overview of this survey in
Fig. 3. The typical PL solutions for SSSS are categorized into
four sections: model structure, pseudo-label refinement, data
enhancement, and optimization improvement. Specifically, the
model structure can be broadly classified into single-model
and multi-model frameworks. Pseudo-label refinement is car-
ried out to mitigate confirmation bias [60] and improve the
quality of pseudo-labels, which is differentiated according to
whether the pseudo-labels are updated or not. The optimization
improvement section primarily encompasses loss function,
data enhancement, label-data utilization, and pseudo-labels
utilization. We detail and elaborate on the main contributions
of various approaches from these three perspectives, with the
specific components of each section depicted in Fig. 4.

Following this, we demonstrate the use of PL in various

SSSS domains, such as medical imaging and satellite remote
sensing. Next, we offer a detailed comparison and analysis
of the current SOTA solutions through quantitative and qual-
itative experiments, aiming to provide valuable insights for
researchers in related fields. In summary, we aim for this
review to assist researchers in swiftly understanding the recent
advancements and prospects of PL in SSSS.

Our main contributions are summarized as follows:
• A comprehensive review of the solutions of PL methods

in SSSS is presented, with a focus on organizing the re-
lationships and differences between them and discussing
the advantages and limitations of each technique.

• We provide an extensive evaluation of existing PL meth-
ods by qualitative and quantitative experimental means.

• The emerging technologies available in SSSS are ana-
lyzed and summarized, and current challenges and po-
tential advances in PL methods for SSSS are elaborated
and discussed.

II. PSEUDO-LABEL METHODS FOR SSSS
Numerous applications [50], [51], [61]–[64] have widely

embraced pseudo-labels since their inception, offering the
significant benefit of leveraging unlabeled data and enhancing
model performance [65]–[67]. Nevertheless, they are con-
strained by noise and errors [60]. The decision of how to
utilize pseudo-labels to mitigate model bias is also a major
consideration. This section will provide an overview of recent
studies that employ various strategies to enhance performance,
improve stability, and broaden the scope of applications. In
Table I, a summary of techniques examined in this review is
classified according to their primary contributions.

A. Overall Problem Definition
Within the framework of SSSS, we possess a labeled dataset

Dl = {(xl, yl)}p, which contains p samples with associated
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Fig. 3: Overall depiction of the logical framework in this survey (best viewed in colors).

labels, and an unlabeled dataset Du = {xu}q , comprising q
images without annotations, where q >> p. Our goal is to
develop a deep model M that can minimize the training loss
by taking into account both the labeled and unlabeled datasets.

As illustrated in Fig. 1, the vanilla PL approach involves
the following steps: In the beginning, we train the initial
model M0 on the labeled dataset Dl utilizing the cross-entropy
loss Ll. This training phase produces a pseudo-labeled dataset
D̃u = {(xu,M0(xu))}q for the unlabeled dataset Du, where
M0(xu) denotes the pseudo-labels of xu. Next, we merge
the labeled dataset Dl = (xi, yi) with the pseudo-labeled
dataset D̃u to create a comprehensive dataset D = (Dl∪D̃u).
Finally, we train a new model M using the complete dataset
D to replace M0. The loss function L is composed of two
components: Ll, which denotes the loss on the labeled dataset,
and Lu, which signifies the loss on the unlabeled dataset. The
total loss L can be expressed as:

L = λlLl + λuLu, (1)

where λl and λu represent a hyper-parameter that balances
the trade-off, this can be set to a constant value in advance or
dynamically modified throughout the training phase. The Ll

and Lu can be expressed as:

Ll = −1

p

p∑
l=1

C∑
c=1

yl,c log(pl,c(xl; θ)) (2)

Lu = −1

q

q∑
u=1

C∑
c=1

ỹu,c log(pu,c(xu; θ)) (3)

where pl,c(xl; θ) and pu,c(xu; θ) is the model’s predicted
probability that the sample xl and xu belongs to category
c, respectively. C is the number of categories. yl,c is the
true corresponding to sample xl with category label (one-
hot coding). ỹu,c is the pseudo-label of xu (which can be
either hard or soft) generated by the model, usually selected
by the maximum probability category output by the model.
This straightforward procedure can be iteratively executed to
continually enhance the quality of the generated pseudo-labels.

In the case of complex and challenging scenarios, simply
generating solo hot labels and discarding low-confidence sig-
nals may result in a loss of information, leaving the training
in a sub-optimal trap. Some of the accompanying work [60]
introduced soft pseudo-labels, whereby a certain number of
high-probability categories are retained as labels based on the

pixel’s prediction rather than a single category, all of which
will be involved in the training, a more common practice [68],
[69] is to combine soft and hard labels for training. Similarly,
there is some work [70], [71] that soft-supervises the model
directly using all the additional information retained in the soft
output (soft confidence).

The process and performance of PL can be significantly
influenced by the generation [72], [73], selection [74]–[76],
and improvement [77]–[79] of the pseudo-labels due to the
unexpected distribution gap [60] and the unsatisfactory per-
formance [80] of pre-trained models.

B. Model Structure Perspective
The significance of architecture in deep learning cannot

be overstated as it establishes the framework and layout of
the neural networks employed in these models. The archi-
tecture plays a crucial role in determining how the network
manipulates and analyzes input features, thereby impacting
the model’s capacity to learn and generate precise predic-
tions. Selecting an appropriate architecture is a vital aspect
of constructing a successful deep-learning model. In this
subsection, we examine papers about single-model families
and collaborative mutual-model families.

1) Single model based Methods:
Early Emergence: The concept of PL [46] was first

proposed by Lee, who used a self-training technique [81],
suggesting that the labels with a higher prediction probability
from unlabeled data should be selected as pseudo-labels. The
core idea of this approach is to generate pseudo-labels from the
prediction results of the network, thus extending the training
set with unlabeled data. However, the fluctuation and insta-
bility in the quality of pseudo-labels make the early methods
face many challenges, such as the noise in the pseudo-labels
may lead to degradation of the model performance [82], [83].
To improve SSL, some proposed Teacher-Student Framework
[64], [84], [85]. In this case, the teacher model is updated by
the exponential moving average (EMA) [84] of the student
model, which consistently generates more consistent pseudo-
labels. The student model can learn more meaningful features
by combining the labeled data with the generated pseudo-
labels, thereby significantly improving model performance
without adding labeled data. Although this framework sig-
nificantly improves the stability and robustness of the model,
quality control of the pseudo-labels and the convergence speed
of the student model remain key challenges for future research.
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Self-training Iteration. Self-training iteration is a strategy
for dynamically updating pseudo-labels, aiming to continu-
ously improve the quality of pseudo-labels and the perfor-
mance of the model through multiple iterations. GIST and
RIST [86] proposed greedy algorithmic strategies (GIST) and
iterative self-training-based strategies (RIST) to improve the
accuracy of the model by alternating between the real labels
and pseudo-labels. The main challenges are how to effectively
balance the weights between labeled and pseudo-labeled data,
and how to prevent the accumulation of noise in pseudo-labels
from affecting the training results. However, this method faces
a central problem of noise accumulation in pseudo-labeling
[74]. Low-confidence or erroneous pseudo-labels generated by
the model can be incorrectly reinforced in subsequent itera-
tions, leading to unstable model performance on under-labeled
data. To address this problem, researchers have proposed
various improvements such as ST++ [33], a method whose
key step is selective retraining. The stability of the generated
pseudo-labels during training is utilized in the iterative process
to select more reliable unlabeled images, which are filtered by
an evolutionary process. Unlike methods that require manually
setting pixel filtering confidence thresholds [43], [87], ST++
predicts the performance of pseudo-labels by their gradual
change in reliability, thus eliminating the need for pixel-by-
pixel confidence selection. CISC-R [88] is introduced in the
self-training iteration to labeled image querying to improve
pseudo-label accuracy, an innovation that solves the problem
of high difficulty in pseudo-label selection in existing methods,
but still needs to address how to balance the variability
between labeled and unlabeled samples on complex datasets.
In addition, PseudoSeg [72] focuses on the redesign of pseudo-
labels by introducing a single-stage framework that utilizes
calibration fusion techniques to merge labels from two sources
(model outputs and class activation maps). This technique

has demonstrated a strong potential to improve the quality
of pseudo labels through iterative improvement. The iterative
nature increases the computation time while balancing the
labeled and unlabeled data is crucial to prevent overfitting.

Self-cross Supervision. Self-cross supervision can be used
to obtain diverse predictions by different output modules or
sub-models supervising each other by exchanging pseudo-
labels generated from their predictions, thus providing dif-
ferent perspectives to the model and enhancing the robust-
ness of the learning process. [32] proposed a method called
uncertainty-guided self-cross-supervision (USCS) for SSSS,
which uses multiple output pseudo-labels from a multiple-
input-multiple-output (MIMO) model to supervise each other
and employs uncertainty as a guiding message to encourage
the model to focus on the high-confidence region of the
pseudo-labels (with lower uncertainty) to mitigate the effect
of erroneous pseudo-labels in self-cross-supervision, which
significantly reduces the number of parameters and compu-
tational cost compared to cross-supervision [89]. Significantly
reducing the number of parameters and computational cost.
Self-cross Supervision provides significant improvements in
reducing the parameters and computational overhead of tra-
ditional cross-supervision methods. By exchanging different
predictions between sub-models, the method improves pseudo-
labeling quality. However, it relies on uncertainty scores to
guide supervision, increasing the complexity of model design
and possibly requiring additional tuning.

Auxiliary Tasks. Auxiliary tasks provide additional super-
vision by assigning secondary tasks to the network. These
secondary tasks typically help improve the segmentation by
focusing on specific elements such as boundaries, residuals, or
error localization. Earlier, [90] introduced residual networks to
enhance the self-training framework. In this method, labeled
data is input into an auxiliary residual network to predict the
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residuals from the original outcomes. The later proposed Error
Localization Network (ELN [91]), on the other hand, primarily
aims to assist in error localization. This additional module is
trained to detect potentially incorrect pixel points using the
images and segmentation results as inputs. The ELN structure
contains the main segmentation network (encoder and decoder)
and the auxiliary decoder (D1, D2, . . . , DK). The main
segmentation network is trained by standard cross-entropy
loss, while the auxiliary decoder is trained by restricted cross-
entropy loss:

Laux =
1

|DL|
∑

X∈DL

K∑
k=1

1
{
Lce

(
P k, Y

)
> αk · Lce (P, Y )

}
· Lce

(
P k, Y

)
(4)

where P k = Dk(ε(X)) denotes the segmented prediction of
the kth decoder and αk denotes the scaling hyperparameter
used to limit the loss of the kth auxiliary decoder. The
performance of the auxiliary decoder will be much worse
than the main decoder because it contains various plausi-
ble error predictions and uses them as training inputs for
ELN, similar to manually creating some error data to train
the model. ECS [92] utilized the discrepancy between the
primary segmentation network’s predictions and the ground
truth labels’ predictions as a subset of the training images
for refinement. EPS++ [93] provides rich boundaries through
the saliency map generated by the saliency detection model,
which is combined with image-level labeling information for
joint training, assisting the model in being trained from pixel-
level feedback. Secondary tasks greatly improve the primary
segmentation model by providing additional information. Due
to the additional complexity of designing these tasks and
the increased computational load, a careful balance between
auxiliary and primary tasks is needed to prevent overfitting.

Labeled-unlabeled Interactive. This type of approach in
which labeled and unlabeled data are processed interactively
to improve the overall pseudo-label quality. It is important
to highlight that [94] argues handling labeled and unlabeled
data independently often leads to the loss of significant
prior knowledge obtained from labeled samples. Consequently,
they introduced a technique named GuidedMix-Net, which
enhances the quality of pseudo-labels by leveraging labeling
information to direct the learning process of unlabeled data. In
a similar vein, CISC-R [88], as previously discussed, refines
pseudo-labels at the pixel level by assessing the pixel similarity
between the unlabeled image and the referenced labeled image,
subsequently creating the CISC map. Recently, AllSpark [95]
leveraged unlabeled data to rebuild the features of labeled data
using a transformer architecture, which improves the labeled
data and the training model by integrating the entire data
stream, thereby addressing low-quality pseudo-labels and min-
imizing training bias. Labeled-unlabeled interaction, while a
powerful strategy, must be carefully balanced between labeled
and unlabeled data to prevent the network from over-relying
on several labels, especially in the early stages of training.

Pseudo-labels produced by a single model in self-training
is often unreliable [96]. Typically, a single model’s prediction
confidence is used to filter out low-confidence pseudo-labels,

which leaves behind high-confidence errors and wastes many
low-confidence correct labels [97].

2) Dual-model and Mutual-training:
To address the issues of single-model self-training, where

a single model cannot detect and correct its errors, leading
to confirmation bias [60] and negatively impacting training
and segmentation, mutual-training [119] (illustrated in Fig.4.
(b)) is proposed. In this method, two or more models train
each other based on their differences, identify their errors, and
correct each other. Wang et al. [120] demonstrated that the co-
training process can be seen as combined label propagation
on two views, offering a viable solution for integrating graph-
based and divergence-based semi-supervised methods into a
unified framework. Similar methods in semi-supervised learn-
ing beyond PL are classified as co-training [121], multi-view
constraints [122], and more.

Cross-Pseudo Supervision. Cross-Pseudo Supervision is
a two-model technique in which pseudo-labels generated by
one network are used to supervise the other network, en-
couraging mutual refinement and minimizing pseudo-labeling
errors. A traditional inter-training method is dual-model cross-
supervision. For instance, the CPS [89] approach employs
different initialization techniques for two networks, where the
pseudo-labels generated by one network are used to super-
vise the other segmentation network. The later introduced n-
CPS [98] extends CPS to n sub-networks. Similarly, a recently
proposed work TorchSemiSeg2 [105] uses a cross-pseudo su-
pervision strategy. In addition, there are several related studies
for dual models that propose cross-view cross-supervision
methods. In their work, [100] introduced a conflict-based
cross-consistency (CCVC) technique aimed at compelling two
subnets to acquire knowledge from distinct perspectives. To
ensure the model extracts more valuable information from con-
flicting predictions, they introduce a Conflict-based Pseudo-
Label (CPL) method that facilitates a stable training process.
Specifically, regarding the previous [123], [124], the conflict
predictions are further categorized into two types: conflicting
and credible and conflicting but untrustworthy predictions. It
allows models to solve the problem of confirmation bias by
correcting each other’s errors through cross-supervision. How-
ever, the need to synchronize multiple networks increases com-
putational complexity, and dealing with conflicting pseudo-
labels increases design difficulty.

Dynamic Mutual-training. Dynamic mutual training is a
technique that initializes two models differently and uses their
differences to train each other. DMT [96] is proposed to use
models with different initial settings, where one model gen-
erates offline pseudo-labels for the other, with differences to
identify errors, assesses their divergence, and dynamically ad-
justs the weight loss from simple to complex [125] throughout
the training process to enhance performance. However, during
the iterative process, the newly acquired knowledge causes
the model to forget previously learned information, leading to
the “catastrophic forgetting” issue [126]. The DMT-PLE [127]
technique builds upon the pseudo-labels enhancement strategy
from the original DMT method. They utilized the pseudo-
labels enhancement strategy (PLE) to prevent the model from
favoring the most recently learned category, i.e., by using the
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TABLE I: An overview of pseudo-labeling techniques in the field of semi-supervised semantic segmentation, for open-source
methods we provide links to the code (best viewed in colors).
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pseudo-labels generated by the previous stage of the model to
refine those produced by the current model. It is an effective
method though to combine the strengths of both models while
minimizing their weaknesses. Due to its two-model structure,
this approach requires more computational power.

This section delves into the nuances of both single-model
and dual-model methods for SSSS. Single-model, while sim-
pler, faces challenges like noise accumulation in pseudo-labels
and computational inefficiency. Dual-model, such as cross-
pseudo supervision and dynamic mutual training, provide more
robust training but come at the cost of increased complexity.
Together, these methods advance the state of semi-supervised
learning by providing innovative solutions to the inherent
challenges of working with both labeled and unlabeled data.

C. Pseudo-label Refinement Methods

Noise is an inevitable aspect of PL. Introducing erroneous
predictions or faulty labels during training results in error
buildup, which obstructs proper guidance for further learn-
ing and negatively affects the segmentation model’s training
results. To address this issue, a range of techniques have
been introduced in related research. In this subsection, we
will examine these techniques from two viewpoints: the first
involves filtering-only methods, used to remove unreliable
pseudo-labels, and the second involves pseudo-label updating
methods, aimed at fixing or correcting pseudo-labels.

1) Filtering-only Methods: Filtering-only methods focus
on filtering out noisy pseudo-labels based on confidence to
improve segmentation results. A threshold is set to filter
out unreliable predictions through fixed or dynamic methods,
sometimes with the help of an auxiliary network.

Fixed Threshold Filtering. Fixed threshold filtering uses
a static, predefined threshold to determine the reliability of
pseudo labels. During training, only pseudo-labels with a
confidence level higher than the threshold are used to avoid
incorporating noise into the model. FixMatch [74] is an image
classification approach that relies on pseudo-labels. During the
generation of pseudo-labels, if the confidence in image clas-
sification exceeds a fixed threshold, the loss for that image is
calculated. In the realm of semantic segmentation, some tech-
niques employ straightforward threshold filtering. CAC [43]
utilized a fixed threshold to create pseudo-labels. U2PL [64]
applied a fixed entropy value as the filtering criterion for the
prediction of each pixel. DST-CBC [76] set the threshold based
on the proportion and overall confidence distribution of a spe-
cific class of pixels and progressively increased the proportion
of pixels in the pseudo-labels throughout training. Similarly,
DGCL [128] adjusted this proportion based on the entropy
of each pixel’s prediction result. While fixed thresholds are
simple to use, their fixity may discard potentially useful low-
confidence labels or retain some high-confidence but incorrect
labels, and the inability to adapt to model predictions that
evolve is also a drawback.

Dynamic Confidence Filtering. Unlike the fixed threshold
approaches, dynamic confidence filtering adjusts the confi-
dence threshold during training based on the changing perfor-
mance of the model. This allows more flexibility in retaining

pseudo-labels that initially have low confidence, but whose
confidence improves over time. C3-SemiSeg [104] employs
a dynamic selection strategy for confidence regions to con-
centrate on high-confidence areas during loss calculation. Fur-
thermore, it incorporates cross-set contrast learning to enhance
feature representation. [75] suggests that using a thresholding
method based on categories might be more effective. To tackle
the issue where existing high-reliability pseudo-labels discard
significant information, [97] introduced Adaptive Class-by-
Class Confidence Thresholding (ACT), which reduces the
reliance on calibration scores to dynamically modify the
reliability confidence thresholds. Given that much of the prior
research evaluated pseudo-labels primarily based on confi-
dence thresholds, the initial issue of confidence ambiguity
may significantly hinder subsequent updates. Recently, [106]
proposed PGCL, which addresses the challenge of unclear
confidence scores in network pruning by incrementally train-
ing the network from simple to complex examples using a
coarse strategy. As noted in FreeMatch [129], using fixed
thresholds that are either too stringent or too lenient can nega-
tively impact model convergence. Corrmatch [71] introduces a
dynamic global thresholding strategy that adapts to the training
process. Dynamic Confidence Filtering avoids the negative
impacts of too strict or loose fixed thresholds, especially in
the later stages of training, it can better capture the details
and effectively deal with the confidence changes in complex
scenes or different categories. However, the threshold needs to
be adjusted according to different categories or scenes, which
increases the computational complexity. It may introduce new
instability, which may affect the convergence of the model if
it is not properly adjusted.

Assistant Network Filtering. Auxiliary network filtering
relies on an auxiliary network to assist in filtering. This
auxiliary (or assistant) network helps the primary network to
pass only reliable pseudo-labels, filtering out noisy or unre-
liable pseudo-labels. Moreover, certain techniques employed
auxiliary frameworks for filtering tasks. For instance, GTA-
Seg [107] employed an auxiliary framework called the gentle
Teaching Assistant. The GTA acquires knowledge directly
from the pseudo-labels created by the teacher’s network, and
solely filtered, beneficial information is transmitted to the
student’s network to aid in overseeing the student’s network
training. The auxiliary network helps to provide higher-quality
training data for the main network, which further improves
the quality of the pseudo-labels. However, the additional
network structure increases the training time and consumption
of computational resources. If the auxiliary network itself is
not of high quality, new noise or bias may be introduced.

2) Pseudo-label Update Methods: Unlike filter-only meth-
ods that discard unreliable labels, pseudo-label update methods
focus on improving the quality of pseudo-labels by proactively
correcting and refining them during the training process.
Label correction and debiasing techniques can ensure that
updated pseudo-labels provide more accurate guidance and
help improve training stability and efficiency.

Label Corrections. Label correction methods aim to detect
and correct noisy pseudo-labels by comparing them with other
sources of information (typically using secondary networks,
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graph-based methods, or external knowledge). The goal is to
reduce noise and provide more accurate pseudo-labeling for
training. Pseudo-labels contain noise. Several approaches at-
tempt to identify and rectify these errors by incorporating extra
indicative categories [92], residual errors [90], or deploying
additional networks [35]. Some researchers have approached
this task as learning from noisy pixels. [78] proposed a frame-
work for detecting and correcting labels using a graph-based
approach, which employs a graph attention network supervised
by clean labels to mitigate noise. CARD [79] introduced a
relational network that is independent of categories, aiming to
correct labels by leveraging dependable semantic relationships
between image features. DMT-PLE [77] offers a strategy to
enhance pseudo-labels by updating them with prior knowledge
accumulated from earlier iterations. Drawing inspiration from
ST++ [33], CISC-R [88] employed a query-based image
selection technique that considers inter-class feature variations
and the challenges of noise correction at the initial stages
of training. LOGICDIAG [101] introduced a novel approach
by using symbolic knowledge and logical rules to abstract
semantic concepts, aiming to identify and rectify incorrect
labels. Recently, several have been introduced to focus on
specific region corrections. TorchSemiSeg2 [105] employed
a discriminator to evaluate the trustworthiness of region-level
labels and perform region corrections. CorrMatch [71] utilized
feature maps for correction. In contrast to these approaches,
some enhancement techniques are initiated from the training
phase. [77] proposed a Three-Stage Self-Training method that
generated initial pseudo-labels for unlabelled data through a
self-training process, ensuring segmentation consistency across
multiple tasks. These approaches detect and correct noise,
ensuring more accurate training data and reducing error prop-
agation. The effectiveness is highly dependent on the quality
of external information, and if the correction strategy is not
appropriate, new biases can be introduced instead.

De-biasing. The focus of De-biasing is to reduce bias
due to noise or incorrect pseudo-labels during training. Bias
accumulates throughout iterations, resulting in errors that
are reinforced over time. Such methods aim to correct this
situation by redistributing biased pseudo-labels to be consistent
with the real data distribution. Training bias originates both
from the network itself and from the improper training of
potentially incorrect pseudo-labels, which accumulate errors
over iterations. [102] introduced Distributed Alignment and
Random Sampling (DARS), a straightforward and effective
technique to redistribute biased pseudo-labels, align them with
the ground truth, and mitigate the impact of noisy labels on
training. Aligning their distribution with the true distribution
enhances SSSS. To further reduce bias, DST [103] proposed
debiased self-training. This method’s core principle is that
two parameter-independent classifier heads decouple the gen-
eration and utilization of pseudo-labels, ensuring that only
clean labels are used for training. By re-removing the bias in
training and assigning the distribution of pseudo-labels, these
solutions ensure that they are aligned with the distribution
of the real data, which improves the model’s generalization
ability and accuracy. Strategies need to be precisely designed
and may not be effective in removing bias in pseudo-labels

if not properly implemented. Meanwhile, additional debiasing
steps may increase the training complexity.

In this section, we discuss pseudo-label optimization from
two aspects: filtering and updating. Filtering methods focus
on improving model robustness by removing low-confidence
labels and preventing noise from entering the training process.
In contrast, pseudo-label update methods aim to continuously
improve the accuracy of pseudo-labels and ensure that the
model learns more reliable pseudo-labels. Each of these two
types of methods has its focus, with the filtering methods
effectively reducing the noise interference in the pseudo-labels,
while the updating methods further optimize the model’s
learning process by improving the quality of the pseudo-labels.

D. Data Enhancement

Data enhancement plays a crucial role in PL for SSSS in
the context of limited labeled data for maximizing model
performance using both labeled and unlabeled data. These
methods aim to artificially increase the diversity of the training
data by performing various transformations, enhancements, or
perturbations on the existing datasets. This subsection explores
two broad classes of data augmentation techniques: Classic-
enhancement Methods and Geometric-enhancement Methods,
examining their evolution, advantages, and limitations.

1) Classic-enhancement Methods: Classical augmentation
methods are effective in improving the generalization ability
of models mainly by creating more diverse training data.

Yuan et al. [111] introduced a straightforward yet highly
effective framework as a baseline for employing a robust
family of data augmentation techniques. They emphasized that
attention to detail is crucial and that a straightforward com-
bination of design and training methods can greatly enhance
segmentation performance. To enhance model generalization,
[108] introduced the CutMix augmentation technique in their
study. This classical method, frequently cited in later research,
involves cutting and pasting patches within training images to
effectively leverage the regularization effect of training pixels
and the loss of preserved regions. ClassMix [109] created aug-
mented data by combining two unlabelled samples to produce
synthetic images and pseudo labels. Following this, [110] in-
troduced ComplexMix, a novel mask-based data augmentation
technique that integrates the CutMix and ClassMix strategies.
AugSeg [112] randomly chooses various data augmentation
techniques to adaptively enhance unlabelled samples, guided
by the model’s estimated confidence for each sample. They
further contend that most current research overlooks the
variability among unlabelled instances and the challenges in
training. To address this, they recently proposed instance-
specific and model-adaptive supervision (iMAS) [113]. Their
modeling concepts are designed to pay more attention to the
unique attributes of each data point, aiming to target and
improve model performance. The simplicity and adaptability
of classical enhancement methods make them easy to imple-
ment in a variety of tasks. However while these methods can
improve model performance, they typically focus on pixel-
level transformations and may not fully capture more complex
changes in the data distribution.
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2) Geometric-enhancement Methods: Geometric enhance-
ment takes a different approach and usually modifies the
spatial configuration of the image without changing the pixel
values. These techniques are particularly useful for introducing
spatial diversity in the training data, thus making the model
more robust to geometric distortions.

Cao et al. [115] introduced a context-aware micro-
aggregable warping technique, which is an unsupervised strat-
egy primarily aimed at perturbing unlabeled images. M3L
[116] introduced a robust perturbation model, which incor-
porates geometric distortions and photometric variations to
achieve consistent predictions on unlabelled, perturbed in-
puts. Following this, [114] advanced the linear method for
addressing geometric enhancement by introducing a baseline
called MR-PhTPS, which relies on nonlinear geometric and
photometric perturbations. SemiFL [130] grounded in data
enhancement integrated semi-supervised federated learning.
Geometric enhancement specializes in dealing with spatial
data variations, making models more resilient to distortions
and geometric changes, and their main advantage is their
ability to capture complex spatial structures. Due to the
complexity of geometric transformations, they may require
more computational resources and their impact on tasks less
sensitive to spatial alignment may be limited.

This subsection explores the key role of data enhancement
in improving the performance of PL when labeled data is
limited in SSSS. Data enhancement aims to increase data
diversity by perturbing the data. There are two categories:
Classical-enhancement and Geometric-enhancement. Classical
enhancement is widely used due to its simplicity, and geo-
metric enhancement improves the robustness of the model to
complex structures by dealing with spatial transformations of
the image. However, classical solutions tend to favor pixel-
level transformations and may not be able to capture more
complex variations in the data distribution, while geometric
enhancement, while excelling in spatial variations, may face
higher computational costs. In practice, a reasonable combi-
nation of these enhancement methods is expected to further
optimize the efficiency and performance of the model in
utilizing the data in the case of annotation scarcity.

E. Optimization Improvement Methods
Enhancing optimization methods is key to boosting PL

performance. In this part, we will concentrate on two major
components: Loss Function and Training Strategy, each play-
ing a vital role in tackling issues with unlabeled data. Loss
functions are often adjusted or crafted to improve confidence,
minimize noise, and enhance the learning process. Concur-
rently, the training strategy directs the model in making the
most out of both labeled and unlabeled data using approaches
like curriculum learning and dual-branch exploration.

1) Loss Function: Loss functions are a critical component
in any deep learning model, dictating how well the model
learns from data and adjusts its parameters. In SSSS research,
the standard cross-entropy (CE) loss remains widely used,
but several modifications have been introduced to improve
the quality of pseudo-labels, enhance training, and address
challenges such as class imbalance and label noise.

Cross-Entropy Loss Improvement. Due to challenges such
as category imbalance and pseudo-labeling noise, traditional
CE may not be sufficient, and several modifications for CE
have been proposed to improve pseudo-label generation and
quality. [117] argued that it is very challenging to summarise
the common features of classes and classify them based on a
small number of samples, so the CE loss should be uniquely
designed based on the SSL properties, and a category-aware
cross-entropy (CCE) was proposed to reduce the class candi-
dates by introducing image-level labels:

LCCE(x,y, c) = − 1

P

P∑
p=1

C∑
i=1

yi,p log
exi,p∑C

i=1 cie
xi,p

(5)

where xi,p is the pixel-level network output of class i at
position p, yi,p are the corresponding segmentation labels, and
the CCE normalizes the prediction x only for those classes
that appear in the current image (ci = 1). CCE simplifies
the generation of pseudo-labels compared to conventional CE.
PCT incrementally incorporates high-quality predictions as
supplementary guidance for network training. Also from the
category perspective, [59] addresses the category imbalance
problem of pseudo labels by proposing a balanced loss func-
tion to reduce the dominance of frequent classes. The Cross-
Entropy Loss Improvement addresses the core limitations of
traditional CE loss, such as category imbalance and sparse
data representation. By focusing on the categories present in
each image, CCE reduces the noise introduced by irrelevant
categories. However, these improvements require careful tun-
ing and may be sensitive to specific dataset features, which
limits their generalizability across different tasks.

Weights Guide. Weights Guide introduces a confidence-
based weighting mechanism that adjusts the importance of
individual predictions based on confidence scores to deal with
noisy labels and improve the stability of training. Confidence
threshold-based selection [131] is also a very commonly used
perspective, [132] which reduces noisy labels by weighting
predictions that encourage a higher level of confidence. of
the predictions. PS-MT [133] adopts a stricter confidence-
weighted cross entropy (Conf-CE) as the loss to alleviate the
problem that CE loss training tends to lead to excessive pre-
diction errors. The specific function is represented as follows:

ℓcon(DU , θ
s) =

1

|DU ||Ω|
∑

x∈DU

∑
ω∈Ω

c(ω)ℓ(ỹ(ω), pθs(x)(ω))

(6)

where ℓ(.) denotes the CE loss, ω denotes the pixel address of
the output lattice Ω of the segmentation map, ỹ(ω) ∈ {0, 1}Y
is the prediction of the teacher model from ω, i.e., the pseudo-
label, pθs(x)(ω) ∈ [0, 1]Y is the segmentation prediction
of the student model, and c(ω) ∈ [0, 1] denotes the predic-
tion confidence level of the teacher model. Conf-CE can be
bounded to the high confidence segmentation result of the
region computation. While [134] uses uncertainty-weighted
loss to adjust their contribution in training based on the
uncertainty of the pseudo-labels. [34] pays special attention to
improving pseudo labels in the border region labels accuracy.
Weights Guide greatly improves the model’s ability to filter
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out noise in pseudo-labels. By focusing on high-confidence
predictions, the model avoids overfitting noisy data, resulting
in more robust learning. However, determining the appropriate
confidence threshold and weighting scheme can be challenging
and requires extensive experimentation to strike a balance
between reducing noise and retaining useful information.

Additional Ancillary Loss. In addition to CE, additional
losses such as consistency and contrast learning losses are
introduced to improve the stability and feature representation
of the model, and these auxiliary losses help to ensure that
the model behaves consistently across different enhancement
processes and optimize the pseudo-labels based on feature
similarity. Consistency loss [84], [135] focuses on enhancing
the identical response of the model to the input data, thus
effectively improving the stability of the model in real-world
applications again. [136]–[138]combines the cross-entropy
loss with the consistency loss to improve the reliability and
accuracy of pseudoclabels. Some studies incorporate consis-
tency into the calculation of CE loss, such as those mentioned
in Corrmatch [71]:

Lu =
1

N

N∑
i

ℓ(F(xs
i ),F(xw

i ))⊙Mi (7)

where xw
i and xs

i denote the unlabelled image and its weakly
enhanced and strongly enhanced versions, respectively. Cor-
rmatch treats the prediction of xw

i as a pseudo-label for xs
i

and encourages the output to be consistent under both weakly
and strongly enhanced inputs. U2PL [64] and DGCL [139]
combine contrastive learning loss to optimize pseudo-labels by
feature similarity between samples, which guides the model
to learn more accurate and robust feature representations.
Auxiliary losses are critical to making SSL models more
adaptable to changes in the input data. More robust pseudo-
label refinement can be ensured by enforcing consistency and
encouraging feature alignment. However, the trade-off between
computational complexity and performance gains needs to be
considered, and additional losses can increase training time
and resource requirements.

2) Training Strategy: In PL for SSSS, a reasonable training
strategy is crucial to effectively utilize both labeled and un-
labeled data. This section explores two representative training
strategies: Curriculum Learning and the Two-branch Explo-
ration. Curriculum learning guides the model from simple to
complex by gradually increasing the task difficulty, while the
Two-branch Exploration strategy fully exploits unlabeled data
through co-evolutionary exploration.

Curriculum Learning. The PL relies heavily on the reli-
ability of the obtained prediction labels, but unlabelled data
is not equally reliable in SSL training, and the curriculum
learning strategy, which actively selects credible samples based
on the model’s current capabilities and gradually introduces
more complex samples, can to some extent solve this problem.
[106] gradually learned based on the confidence scores of the
model predictions, somewhat suppressing the introduction of
noisy information. ESL [69] improved the overall segmenta-
tion performance by dynamically maintaining the dominant
category (soft pseudo-labels) i.e., more confident prediction

for each pixel, and gradually transitioning to highly uncertain
samples as the training progresses. [117] then gradually in-
troduce high-quality predictions as additional supervision for
network training through progressive cross-training. Curricu-
lum Learning provides an elegant solution to the noise-pseudo-
labeling problem by starting with simpler, high-confidence
data, allowing the model to build a solid foundation before
dealing with more complex data. However, an incremental
approach may slow down training because of the need to
iteratively assess the confidence of the predictions and adjust
the difficulty of introducing samples. In addition, determining
the optimal progression of sample complexity can be tricky,
especially in highly heterogeneous datasets.

Two-branch Exploration. This is an innovative training
strategy aimed at balancing exploration and stability in SSSS,
with the core idea of exploring the full utilization of un-
labeled data using two parallel prediction networks. CPCL
[118] (Conservative-Progressive Collaborative Learning) en-
ables two branches to operate under different supervised
paradigms: cross-supervision and joint-supervision. The con-
servative branch seeks commonalities between predictions,
ensuring reliable model updates based on the most certain
labeled predictions. The progressive branch embraces diver-
gence by utilizing the full set of pseudo-labels, encouraging
the model to explore potential patterns in the data. Like other
multi-branching approaches (Dual Student [134] and Cross
Pseudo Supervision [89]) also explores multistream solutions.
The unique feature of the two-branch exploration strategy is
that it emphasizes the collaboration and distinction between
conservative and progressive branches, thus achieving a finer
balance between stabilization and exploration. However, the
coordinated two branches need to be carefully designed to
ensure that they complement each other effectively.

This section provides a summary exploring two components
for improving the performance of PL techniques in SSSS: Loss
Functions and Training Strategies. Undeniably, the loss func-
tion is the primary mechanism for tuning model parameters
and refining it is key to reducing labeling noise and addressing
the challenges inherent in using unlabeled data. Standard CE
loss, while effective, is often insufficient in SSL, so advanced
loss has been developed to mitigate class imbalance and
improve label quality. Meanwhile, training strategies such as
curriculum learning adapt the training process to predictions
with different confidence levels, thus gradually improving
model performance, and two-branch exploration guides the
effective utilization of labeled and unlabeled data. Together,
these approaches enhance the robustness and stability of the
training process, addressing the main challenges associated
with noisy and unbalanced data, while making a trade-off
between complexity and performance.

F. Hybrid Techniques for Pseudo-Labelling Combined with
Other Semi-supervised Methods

After an in-depth discussion of PL in SSSS, this section fo-
cuses on an innovative approach that further enhances perfor-
mance by combining PL with other state-of-the-art techniques.
Those methods not only retain the advantages of the PL in



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XX 2024 11

s

Image

• Input Perturbation

Strong 
Enhancement 

Weak 
Enhancement 

Encoder

Feature

Decoder

• Network Perturbation

• Feature Perturbation

Maintain consistent 
generation of pseudo-labels 

under perturbation

Pseudo
labels

Combining Consistency Regularization

Segmentation 
Networks

Generator

--------------------------------------------------------------------

Noise Pseudo label

Discriminator�풂��

Image

Pseudo label

Ground truth

Discriminator

Ground truth

�풂��

Combining Adversarial TrainingCombining Contrastive Learning

Encoder

Feature

Decoder

Pseudo 
labels

Feature space

i
+

-

-
-

-

Pixel Contrast

�풄�

Image

Fig. 5: This illustrated solution details a hybrid approach to PL combining other SSSS advances, including consistent
regularization (CR), comparative learning (CL), and adversarial training (GAN), notably adversarial training incorporates two
architectures differentiated by whether or not they contain Generators(best viewed in colors).

exploiting unlabeled data, but also enhance the generalization
ability and robustness of the model by integrating strategies
such as Consistent Regularization (CR), Comparative Learning
(CL), and Adversarial Training (AT). We show a detailed
illustration of the hybrid technique in Fig.5.

1) Combining Consistency-Regularization Methods:
CR [140] is typically implemented by introducing perturba-

tions at various stages of the training process to train models
that produce consistent predictions. The perturbations used
in existing studies include input perturbation [36], feature
perturbation [141]–[143], network perturbation [35], [144],
and hybrid perturbation [145], [146]. Currently, some research
in the SSL domain has focused on integrating CR with the PL
approach [147]. These studies have demonstrated that combin-
ing the two techniques enhances performance, indicating the
potential for further improving accuracy in the SSSS domain,
particularly for images with limited labeled data. [135] initially
developed FixMatch to streamline the SSL process created
high-confidence pseudo-labels and integrated them with con-
sistency regularization to guarantee stable prediction outcomes
for augmented unlabeled images.

Image and Feature Dual Perturbation. Given that many
earlier studies utilized a single type of perturbation and ob-
tained promising outcomes, there have been efforts to integrate
different perturbations. A common research direction involves
combining image perturbation with feature perturbation. [148]
innovatively introduced a novel framework named the Auxil-
iary Mean Teacher Model, which is grounded in a consistency

regularization method. In this framework, pseudo-labels pro-
duced by one mean teacher guide another student network,
facilitating mutual knowledge distillation between the two
branches. CFCG [138] employs image-level and feature-level
perturbations and cross-fertilization supervision (CFS) mech-
anisms to extend the feature distribution. Given that certain
SSL methods like SwAV [149] and ReMixMatch [150] utilize
multi-branch perturbations to enforce consistency, UniMatch
[124] similarly aimed to merge image and feature perturba-
tions and revisited the weak-to-strong consistency framework
introduced by FixMatch [135] in SSL and enhanced it by cre-
ating a straightforward and effective consistency framework.
This framework introduces a dual-flow perturbation approach,
expanding the perturbation space by separating image and
feature perturbations into two distinct flows.

Resolution of class imbalances. Given that SSSS fre-
quently deals with limited or unbalanced datasets, it often un-
derperforms in certain categories and faces significant category
bias issues, such as the long-tailed label distribution seen in the
tail categories of the CityScapes dataset. However, many cur-
rent methods largely overlook this issue and treat all categories
the same. The integration of consistent regularization and PL
offers a novel approach to addressing class imbalance by
enhancing the model’s generalization to a few classes and low-
confidence predictions. [179] introduced a novel framework,
AEL, which adaptively adjusts the training process for well-
performing and poorly-performing categories. It dynamically
monitors category performance using a confidence base during
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training, thereby shifting the training focus towards the under-
performing categories. Subsequently, USRN [180] proposed an
unbiased subclass regularization network to address category
imbalance by learning unbiased category divisions within a
balanced subclass distribution using K-means clustering [181].

Cross-View Learning. [99] proposed an uncertainty-guided
cross-head co-training (UCC) framework that incorporates
both weak and strong augmentations within a shared encoder.
This approach seamlessly merges the benefits of CR and PL,
enabling the learning of a more compact feature representation
from two distinct perspectives. PseudoSeg [72] employed a
single-stage consistency framework that effectively combined
robust data augmentations from various perspectives and
created pseudo-labels for consistency training. CCVC [100]
introduced the cross-view consistency (CVC) strategy, which
promotes the two subnets to extract distinct features from the
same input by incorporating a feature difference loss.

The integration of CR with PL enhances the learning
process of SSSS. CR ensures that the predictions remain con-
sistent when perturbed due to its properties, which minimizes
the sensitivity of the PL model to changes, resulting in a more
stable pseudo-label generation process. Additionally, CR ad-
dresses category imbalance and improves model performance
on underrepresented categories, which further complements
PL. In situations where pseudo-labels may be noisy or of
low confidence, CR helps normalize and stabilize the learning
process, ensuring that the model remains robust even in the
face of challenging datasets or imbalanced categories.

2) Combining Contrastive Learning Methods:
CL [182] aims to enhance semantic segmentation by learn-

ing more effective representations in the embedding space.
This is achieved by drawing positive samples closer and
pushing negative samples further apart, thereby enabling the
model to discern pixel similarities and differences better.
Given the task’s specificity, the common approach involves
augmenting query samples with images modified through data
perturbation. ReCo [183] initially introduced the application

of CL methods to SSL tasks.
Currently, some approaches integrate CL with PL methods.

[64] introduced an enhanced technique, U2PL, focusing on un-
reliable pixels by placing them into a negative sample storage
queue to maximize the use of unlabeled data. In a recent study,
DGCL [139] introduced Density Guided Contrastive Learning,
which aims to move anchor features in sparse areas closer
to cluster centers represented by density-positive keys. ELN
[91] disregards label noise during the training phase, thereby
attaining robustness against erroneous pseudo-labels and can
be seamlessly integrated with CL. Other research integrates
CR and CL to enhance PL. C3-SemiSeg [104] leveraged
CR for feature alignment under perturbations, proposes a
new cross-set region-level data augmentation approach and
incorporates cross-set CL to boost feature representation.

CL addresses the limitation of confirmation bias in PL by
encouraging the model to focus on the relational structure of
the data, which enhances the model’s ability to distinguish
between categories by pushing dissimilar pixels out of the way
and bringing similar pixels closer together. Not only does this
make the representation more robust, but by organizing the
feature space and ensuring better separability between cate-
gories, CL complements PL, ultimately enabling more reliable
training and better generalization, especially in complex or
high-dimensional segmentation tasks.

3) Combining Adversarial Training Methods:
Combining with Adversarial Training (AT) usually gener-

ates pseudo-labels through the use of Adversarial Generative
Models (GAN) [184], but involves huge training challenges
and high inference costs. Due to the complexity of the
generation task, these methods are typically restricted to
specific application areas, such as medical image segmentation
for particular families or diseases. Earlier techniques [37]
introduced additional supervision via a generator. Given the
training difficulty and computational demands, more recent
studies [35], [185], [186] have concentrated on segmentation
networks that incorporate only a discriminator. In this network

TABLE II: A summary of common application scenarios of pseudo-label approaches covered in this review, for open-source
methods we provide links to the code (best viewed in colors).

Category Method Publish Dataset(s) Main contributions

Medical
Image

Segmentation

ATSO [50] CVPR21 [151],etc. Asynchronous teacher-student optimization algorithm
SLC-Net [61] MICCAI22 [152], [153] Dual network cross-model pseudo-supervised framework

Compete to Win [73] TMI23 [151], [152], [154] New competition winning approach,
boundary awareness enhancement module

EMSSL [62] ArXiv23 [155]–[157] Variational approach to generalize Bayesian pseudo-labels

BCP [158] CVPR23 [151], [152], [159] Mean Teacher structure combined with
two-way copy-paste supervision

EPL SemiDG [160] AAAI22 [161], [162] Confidence-aware cross-pseudo-supervision
incorporating∼consistency regularization

ACTS [163] TMI22 [159], [164], [165] Dynamic convolution, adversarial self-integrating network
combining consistency regularization and adversarial learning

S5CL [166] MICCAI22 [167], [168] Single-stage self-supervised pretext task, model fine-tuning
CLCC-semi [169] ISBI22 [165], [170] Cross-level comparison learning and consistency constraints

CDCL [171] CVPR22 [172], [173] Cross-patch dense contrast learning framework

Remote
Sensing
Image

Segmentation

[51] Elec.23 Vaihingen [174] Dual network combination: UNet and DeepLabV3
[175] Entropy23 [63],etc. Double cross entropy consistency, channel attention mechanism

ICNet [64] GRSL21 [176] Iterative contrast network incorporating contrast learning

MS4D-Net [177] Remote Sensing23 [178] End-to-end multi-tasking Siamese networks
incorporating consistency regularization

https://github.com/Huiimin5/comwin
https://github.com/moucheng2017/EM-BPL-Semi-Seg
https://github.com/DeepMed-Lab-ECNU/BCP
https://github.com/Huiimin5/comwin
https://github.com/SUST-reynole/ASE-Net
https://github.com/manuel-tran/s5cl
https://github.com/ShinkaiZ/CLCC-semi
https://github.com/zzw-szu/CDCL
https://github.com/VCISwang/ICNet
https://github.com/YJ-He/MS4D-Net-Building-Damage-Assessment/tree/master
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structure, the segmentation network acts as a generator, while
the discriminator assesses the authenticity of the images.

Cao et al. [115] introduced an adversarial two-student
framework named ADS-SemiSeg, which enhances the ”Mean
Teacher” approach in two primary aspects. Firstly, the two-
student model is trained independently while incorporating
stability constraints to leverage model diversity. Secondly, an
adversarial training strategy is employed for both students,
along with a discriminator to identify reliable pseudo-labels
from the unlabeled data for self-training. Referring specifically
to s4GAN [70], the discriminator functions as the adversarial
component in each branch.

The combination of AT and PL provides a complementary
approach to enhance SSSS by addressing the different weak-
nesses of each method. While PL provides a mechanism for
utilizing large amounts of unlabeled data, it often suffers from
noisy labels. AT improves network robustness by incorporating
a discriminator that filters out unreliable pseudo-labeling,
thereby mitigating noise and increasing the reliability of the
training data. This combination compensates for each other’s
limitations: while PL extends the dataset with automatically
generated labels, AT ensures that only the most trustworthy
pseudo-labels are retained for further learning, leading to
a more stable and efficient training process, especially in
challenging domains where labeled data is scarce.

III. PSEUDO-LABEL METHODS IN OTHER AREAS

Pseudo-labeling is extensively utilized in semantic seg-
mentation due to its straightforwardness and efficiency. The
techniques discussed in the previous section primarily target
natural image segmentation. However, advancing research and
application of image segmentation across various fields is
undeniably crucial. This section concentrates on pseudo-label
methods applied to specific areas, such as medical imaging
and remote sensing image segmentation. Table II provides a
summary of the PL methods discussed in this section.

A. Medical Image Segmentation

The process of segmenting medical images, which involves
identifying the pixels corresponding to organs or lesions in
CT or MRI scans, is highly challenging in medical image
analysis due to the limited availability of sufficient labels.
Numerous studies have proposed using PL, demonstrating
promising outcomes when applied to specific medical datasets.

Initially, [50] identified a flaw in the model known as lazy
mimicking, where the model tends to maintain its previous
predictions and resist change. They proposed a new method
called Asynchronous Teacher-Student Optimization (ATSO) to
solve the inert problem. In contrast, EMSSL [62] improves the
interpretability of the model to a certain extent by connecting
the original method to the Expectation Maximization (EM)
algorithm [187] and providing a comprehensive generalization
of the pseudo-labels within a Bayesian framework. However,
a frequent issue in medical image segmentation is the uneven
distribution of labeled and unlabeled data. Prior research that
handled these two data segments separately or inconsistently
might overlook the valuable insights from the labeled data.

BCP [158] suggested a simple architecture to address this
issue by integrating labeled and unlabeled data bi-directionally.
Moreover, several studies have implemented the dual-model
concept to enhance PL for medical image segmentation.
[61] introduced an innovative cross-model pseudo-supervision
framework, SLC-Net, which leverages shape awareness and
local context constraints to produce anatomically accurate pre-
dictions. [73] created high-quality pseudo-labels by comparing
multiple confidence graphs generated by different networks
and selecting the result with the highest confidence.

The scarcity of annotations and the abundance of unlabeled
data are common challenges in computational pathology seg-
mentation. SSL is a solution to this problem, but a single ap-
proach often fails to achieve satisfactory results, and many re-
ports have PL hybrid techniques that have been extensively ex-
plored and investigated. [166] integrated PL with CL to create
a unified medical segmentation framework, S5CL, that com-
bines the two training phases of self-supervision and model
fine-tuning into one. In addition, some studies utilized the
integration of CL and CR for SSSS in medical images. [169]
proposed a method called CLCC, which merges cross-level
CL with CR constraints to improve the representation of local
features in the medical field. Following this, [171] introduced
CDCL, a dense CL framework based on cross-patch analysis,
aimed at segmenting cell nuclei in pathological images. To im-
prove the quality of pseudo-labeling in medical segmentation,
[160] proposed an innovative confidence-aware cross-pseudo-
supervised algorithm, EPL-SemiDG, which combines PL and
CR techniques. ASE-Net [163] have explored the combination
with adversarial learning on top of this, leading to the proposal
of a novel adversarial consistency self-integrating network.

B. Remote Sensing Image Segmentation

Annotating high-resolution remote-sensing satellite images
is a time-consuming and labor-intensive task. This constraint
impacts the effectiveness of segmentation models. Some stud-
ies suggest employing PL techniques based on SSL to mitigate
this challenge. These approaches are designed to aid in the
segmentation of remote-sensing images.

Similarly, the availability of high-quality labeled images for
remote sensing is quite limited, just as it is in medical image
segmentation. Several reports have introduced semi-supervised
methods to train remote sensing image segmentation models,
achieving remarkable results. Wang et al. [64] introduced
ICNet for remotely sensed images, which utilizes the CL
technique to obtain more potential information in remotely
remote sensing images gradually. In [177], PL and CR are
integrated to develop MS4D-Net, an end-to-end framework
for assessing post-disaster building damage in remote sensing
image segmentation. This framework employs a multi-task
Siamese network to enhance damage classification outcomes
by utilizing building extraction results.

Li et al. [51] introduced a method that employs two net-
works (UNet [200] and DeepLabV3 [201]) to predict labels
for the same set of unlabeled samples. They then incorporate
pseudo labels with high predictive consistency into the training
set to enhance the accuracy of semantic segmentation when
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TABLE III: A compilation of datasets commonly used in the field of semi-supervised semantic segmentation.

Category Datesets Classes Resolution Annotated Samples Domain Coverage Download

Pascal VOC [188] 21 500×375 >16,000 General objects Link
ADE20K [189] 150 Varying >25,000 Multiple (indoor, outdoor) LinkNatural

Images MS-COCO [190] 80 Varying >200,000 Multiple (everyday scenes) Link

KITTI [191] 28 1242×375 400 Autonomous driving Link
CamVid [192] 32 960×720 701 Road scenes Link

Cityscapes [17] 19 2048×1024 5,000 Urban Driving Scenes Link
RainCityscapes [193] 32 2048×1024 5,000 Rainy weather street scenes Link

FoggyCityscapes [194] 32 2048×1024 5,000 Foggy street scenes Link
BDD100K [195] 40 1280×720 10,000 Diverse road scenes Link

Street-view
Images

Mapillary [196] 66 Varying 25,000 Road scenes Link

MoNuSeg [197] 2 Varying 30 Nuclei segmentation Link
Pancreas-NIH [151] 2 512×512 82 Pancreas (CT) Link

LA [159] 2 Varying 100 Left atrium (MRI) Link
ACDC [152] 4 256×256 100 Cardiac MRI Link

Kvasir-SEG [170] 2 Varying 1,000 Gastrointestinal (polyp detection) Link
BRATS [156] 5 Varying 2,040 Brain tumor (MRI) Link

ISIC-2018 [165] 7 Varying 3,694 Skin lesion (dermatology) Link

Medical
Images

NCT-CRC-HE-100K [167] 9 224×224 100,000 Colorectal cancer histology Link

GID [63] 5 7200×6800 150 Land cover classification (satellite) Link
iSAID [176] 15 800×800 2,806 Aerial imagery Link

FloodNet [198] 9 4000×3000 3,200 Flood land related Link
xBD [178] 4 1024×1024 22,068 Building damage detection Link

Satellite
Images

EuroSAT [199] 10 64×64 27,000 Diverse ground cover Link

labeled samples are scarce. In their latest study, [175] proposed
an innovative method that leverages bicommutative entropy
consistency and a teacher-student framework. The complexity
of this task lies in the presence of multiple categories, intricate
topography, significant category overlap, and ambiguous fea-
tures. Therefore, the authors integrated the channel attention
(CA) mechanism into the teacher coding network, which
effectively filters the feature mapping and mitigates the noise
interference, thus refining feature extraction and reducing the
information entropy generated by the coding network.

IV. CLASSICAL DATASETS

This section describes the datasets suitable for semantic
segmentation tasks and categorizes them according to their
content and image characteristics.

Public datasets are an important resource for the research
community as they shape and encapsulate the task’s challenges
and serve as benchmarks for evaluation. However, large-scale
semantic segmentation datasets are still relatively scarce. By
‘large-scale’ we mean datasets with high capacity (100,000
sheets or more) and high resolution (1024x1024 pixels or
higher). On the one hand, many existing datasets, while valu-
able, tend to be domain-specific, focus on a limited number
of scenes, and lack diversity because imaging equipment
varies from scene to scene. On the other hand, the cost
of annotating pixel-level data for semantic segmentation is
prohibitive compared to other computer vision tasks (e.g.,
image classification [202]–[205], which requires only image-
level annotations, or object detection [206]–[208], which
requires labels the category and location of each object). This
high cost further limits the availability of large-scale datasets
with rich and fine-grained annotations.

Table III lists the most commonly used semi-supervised
datasets for different tasks. It is worth noting that these datasets

listed in the table can also be used as benchmarks in fully
supervised, weakly supervised, or unsupervised situations.
This is simply a matter of selectively using the data and
corresponding labels during training. Since this study focuses
on SSSS, some fully labeled images are usually selected for
SSL, in the proportion of 5%, 10%, etc., and the rest are
left unlabelled. From Table III we can see that there are a
limited number of datasets that meet the large-scale and high-
resolution criteria. Therefore, we hope that future research
should prioritize the development of more comprehensive
datasets to support the training of models in more diverse and
complex scenarios, including extreme lighting conditions and
finer object annotations. These larger datasets will improve
model performance, especially when pre-training for real-
world applications.

V. EXPERIMENT

In this section, we provide a qualitative comparison and a
quantitative assessment of representative conventional methods
covered in our survey.

A. Experimental Setup

Dataset. When choosing the experimental datasets for eval-
uation, we took into account the range of categories and
distinctive features. This approach enabled a more effective
quantitative analysis and qualitative discussion while also
allowing for a comparison of the different methods described
in the prior section. Initially, we select the PASCAL VOC 2012
dataset [188], [209], as it is the most frequently utilized in the
SSSS domain, to perform experiments aimed at quantitatively
comparing different approaches. This dataset encompasses a
wide variety of natural images and categories, which aids
in achieving more reliable experimental outcomes. To ensure
consistent evaluation of the algorithm’s performance, for the

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
https://github.com/CSAILVision/ADE20K
https://cocodataset.org/#download
https://www.cvlibs.net/datasets/kitti/
https://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
https://www.cityscapes-dataset.com/downloads/
https://www.cityscapes-dataset.com/downloads/
https://www.cityscapes-dataset.com/downloads/
https://doc.bdd100k.com/download.html
https://www.mapillary.com/dataset/vistas
https://monuseg.grand-challenge.org/
https://academictorrents.com/details/80ecfefcabede760cdbdf63e38986501f7becd49
https://www.cardiacatlas.org/atriaseg2018-challenge/atria-seg-data/
https://acdc.vision.ee.ethz.ch/download
https://datasets.simula.no/kvasir-seg/
https://www.synapse.org/Synapse:syn51156910/wiki/621282
https://challenge.isic-archive.com/data/#2018
https://zenodo.org/records/1214456
https://captain-whu.github.io/GID/index.html
https://captain-whu.github.io/iSAID/index.html
https://github.com/BinaLab/FloodNet-Supervised_v1.0
https://eod-grss-ieee.com/dataset-detail/MHpyVXNmV0dxaEtWWVBaNzlpckJPUT09
https://github.com/phelber/eurosat
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TABLE IV: Detailed information about the experimental data. Includes specific divisions as well as labeling ratios and the
number of labeled and unlabeled images in the constructed partitions.

Datasets Classes Full Train Set Test Set Val Set Label Ratio Labeled Images Unlabeled Images

1 / 2 5291 5291
1 / 4 2646 7936
1 / 8 1323 9259PASCAL VOC 2012 [188] 21 10582 4952 1449

1 / 16 662 9920

Cityscapes [17] 19 2975 1525 500 1 / 4 744 2231

PASCAL VOC 2012 dataset, we set the crop size to 321 ×
321 and trained for 80 epochs. We employ a learning policy
starting with an initial learning rate of 0.001, which is then
adjusted by multiplying it with

(
1− epoch

total epoch

)power

. The
power and weight decay are set to 0.9 and 0.0001, respectively.
Secondly, because the images have high resolution and contain
many categories within each image (unlike PASCAL VOC
2012, which emphasizes fewer categories per image), we
opted for the Cityscapes dataset for visualizing qualitative
experiments. This approach allows us to assess the ability
of trained models in complex environments with multiple
adjacent categories that may be similar or share semantic links.

Datasets Partition. In SSL experiments, dataset partition is
a key aspect that affects performance, and to obtain a compa-
rable and more plausible result with others, our quantitative
experiments on PASCAL VOC 2012 used the partitioning
protocol of U2PL [64], a commonly used data partitioning
protocol that encompasses a wide variety of scenarios in
terms of label ratios. The whole training was divided into two
subsets, where 1/2, 1/4, 1/8, and 1/16 scale data were selected
as labeled sets and the rest as unlabeled sets. In contrast, our
qualitative experiments on the Cityscapes dataset uniformly
chose the 1/4 labeled set for training evaluation. The validation
methods used in the experiments involve the typical approach
of splitting each dataset into training and validation subsets.
Our standard validation approach includes a simple holdout,
a training set, and a validation set. Detailed descriptions of
partitions can be found in Table IV.

Backbone Network and Specific Settings. Different semi-
supervised methods rely on various underlying models and
backbone networks. Consequently, the final performance of
these segmentation methods is highly dependent on the net-
work, complicating performance comparisons. To address
this, we standardized this critical aspect in our experiments.
Based on setups and results from the literature, we selected
DeepLabV3+ [201] as the base model and ResNet101 [210] as
the backbone, a combination that yields superior performance.
All experiments in this review were conducted using Python
as the programming language and the PyTorch deep learning
framework. Specific quantitative experiments were trained and
tested on 4 NVIDIA V100 GPUs with a batch size of 16.

Performance Metric. The performance metric we use in
this experiment is the standard evaluation metric in SSL, which
is the mean intersection over union (mIoU ). Unlike accuracy
metrics commonly used for classification tasks, mIoU can be
robust to the presence of unbalanced classes, which is very
common in problems with pixel-level labeling. Specifically,

mIoU measures the ratio of the number of true positives (TP )
to the sum of true positives (TP ), false positives (FP ), and
false negatives (FN ), averaged as shown in the formula below:

mIoU =
1

N

N∑
i=1

Nii∑N
j=1 Nij +

∑N
j=1 Nji −Nii

(8)

where N is the number of categories, Nii is the number of
true positives (TP ) for category i, Nij is the number of false
positives (FP ) for categories i and j, and Nji is the number
of false negatives (FN ) for categories j and i.

Method Selection. The purpose of the selection phase
in our experimental methodology was to take into account
all viewpoints and choose 1-4 studies in each subcategory
for assessment using the same parameters and protocols
(quantitative evaluation), as well as to engage in discussion
based on the experimental outcomes and related approaches
from the original literature (qualitative discussion). As our
baseline, we utilized the original self-training model [33],
which was trained solely with labeled data. From the model
perspective, GIST&RIST [86], USCS [32] and ST++ [33]
were selected for single-model, while DMT [96], CPS [89]
and CCVC [100] were chosen for multi-model approaches.
Regarding the pseudo-label refinement perspective, CARD
[79], CISC-R [88], LogicDiag [101], and Corrmatch [71]
focus on “Label Update”. On the other hand, CAFS [97],
TorchSemiSeg2 [105], PGCL [106], and GTA-Seg [107] are
discussed around “Filter-only”. From the data augmentation
perspective, we chose three methods for traditional augmen-
tation, CutMix [108], AugSeg [112], and iMAS [113], the
latter two mainly exploring randomized combinations and
instance-specific augmentation on a traditional basis. As for
the optimization methods, PS-MT [133], Corrmatch [71] focus
on the loss function perspective, while PGCL [106], ESL
[69] and CPCL [118] improve the training from the training
strategy perspective. In addition, we assess the USRN [180],
AEL [179], CFCG [138], and UniMatch [124] as part of hybrid
approaches that integrate CR. Additionally, DGCL [139] and
U2PL [64] are merged with CL, and ADS-SemiSeg [115]
is merged with AT. It is important to acknowledge that the
methodologies within each category are designed to address
specific aspects of PL in SSSS and to overcome particular
challenges. Model perspective primarily assesses methods in
terms of their framework structure. Pseudo-label refinement
primarily enhances the quality of pseudo-labels. Data aug-
mentation improves the model’s robustness by increasing data
diversity. Optimization improvement stabilizes the training
process through consistency and loss function. Therefore,
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TABLE V: Results of various PL methods on the PASCAL VOC 2012 val dataset and self-training baseline results. Each column
corresponds to the ratio of labeled/unlabeled images (the numbers in parentheses indicate the number of labeled images used
in each scenario). In each partition, the results obtained with the best method, respectively, are bolded. (Indicator: mIoU ).

Category Method 1 / 2 ( 5291 ) 1 / 4 ( 2646 ) 1 / 8 ( 1323 ) 1 / 16 ( 662 )

Baseline 75.13 72.15 69.67 64.40

GIST&RIST∗ — — 70.76 —
ST++˜ 76.53 75.51 74.97 72.43Single Model
USCS∗ 78.63 77.09 76.20 74.52
DMT∗ — 71.80 71.00 —
CPS 78.64 77.68 76.44 74.48

Model Structure

Mutual Model
CCVC — 79.00 78.40 77.20

CARD∗ — — 74.07 —
CISC-R˜ 78.02 77.36 77.25 75.39

LogicDiag 81.00 80.62 80.24 79.65
Label Update

Corrmatch˜ 78.73 78.86 78.28 76.87
CAFS∗ 80.70 79.20 77.70 75.10

TorchSemiSeg2 77.04 76.80 74.91 73.38
PGCL∗ — 76.80 76.80 73.60

Pseudo-label Refinement

Filter-only

GTA-Seg 81.01 80.57 80.47 77.82

CutMix-Seg˜ 75.89 74.25 72.69 72.56
AugSeg — 80.5 81.46 79.29

Classic
Data

Enhancement iMAS — 79.30 78.40 77.20Data Enhancement

Geometric Data
Enhancement ADS-SemiSeg — 74.90 73.40 —

PS-MT 79.76 78.72 78.20 75.50Loss Function Corrmatch˜ 78.73 78.86 78.28 76.87
PGCL∗ — 77.90 76.80 73.60
ESL∗ 79.98 79.02 78.57 76.36

Optimization Improvement

Training Strategy
CPCL 75.30 74.58 73.74 71.66

USRN∗ — — — 72.30
AEL 80.29 78.06 77.57 77.20

CFCG∗ 80.77 80.42 79.40 77.39Combining CR

UniMatch — 77.20 77.10 76.50
DGCL∗ 80.96 79.31 78.37 76.61Combining CL U2PL˜ 79.94 78.70 77.60 74.43

Hybrid Techniques

Combining AT ADS-SemiSeg — 74.90 73.40 —
1 ˜ indicates that we reproduced the results.
2 ∗ means that the article does not disclose the open source code, and we cite the results given in the paper, which are only used here for

comparison, where the GIST & RIST use the DeepLabV2 [87] segmentation model and the results of DMT are replicated in [57].

the methods within different categories are not in direct
competition; rather, they are complementary strategies for
addressing distinct challenges. For instance, although AugSeg
demonstrates efficacy in the data enhancement category, this
does not imply that it is superior to CAFS in the pseudo-label
optimization category.

B. Results and Discussions

In this part, we present and analyze the results we have
obtained. Initially, we display and evaluate the quantitative
outcomes derived from the chosen traditional methods on the
PASCAL VOC 2012 and perform an analysis for assessment.
Secondly, we present the outcomes achieved in urban envi-
ronments, providing a qualitative and visual examination of
several widely used techniques on the CityScapes.

1) Quantitative results on PASCAL VOC 2012:
We present in Table V the results of qualitative experimental

evaluations of different methods under the same conditions on
the PASCAL VOC 2012 dataset, encompassing all categories
segmented in our study. Our baseline is the most straight-
forward single-model self-training PL. This process includes

training a model on labeled data, utilizing it to generate
predictions for unlabeled data to create pseudo-labels, and sub-
sequently retraining the model with the complete dataset. From
a broad perspective, partitioning affects the performance of all
methods, including the baseline. As the amount of labeled data
decreases, performance is affected and subsequently declines.
The initial evaluation perspective focuses on the difference
between each method and the baseline. The improvement of
each method over the PL is justified.

Model Structure. As shown in Table V, the ”Model Struc-
ture” category indicates that ”Mutual Model” structures (e.g.,
CPS and CCVC) mostly outperform the single model as the
labeled/unlabeled ratio decreases. For example, when the ratio
is 1/16, CCVC has a mIoU of 77.20, which outperforms the
single model by 2-5%. This suggests that the mutual learning
framework can benefit from the integration of complementary
information between models, especially when labeled data is
limited. We speculate that the ability of mutual models to
refine pseudo-labels and adjust predictions across multiple
networks may help reduce errors caused by noisy pseudo-
labels. Notably, individual models still perform well when
using high-quality labeled data. For example, USCS achieves
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78.63 mIoU at 1/2, indicating that the single model can
still achieve competitive results with sufficient labeled data.
However, in low-labeling environments, single models may
face challenges due to the lack of collaborative information
refinement, whereas mutual aid models offer significant per-
formance advantages by exploiting inter-model consistency,
and their ability to handle noisy pseudo-labels makes them
particularly suitable for extreme SSL scenarios. However, the
computational burden associated with running multiple models
should be fully considered when deploying them in practice.

Pseudo-label Refinement. Refinement techniques such as
LogicDiag and CAFS have proven to be effective in dealing
with noisy labeling challenges and improving the quality of
pseudo-labels with varying labeled/unlabeled ratios. However,
label-update still outperforms filter-only on average. In par-
ticular, LogicDiag achieves an optimal performance of 80.62
mIoU at 1/4, and even at more challenging settings (e.g.,
1/16), LogicDiag shows a strong performance of 79.65 mIoU ,
underscoring its effectiveness in correcting erroneous pseudo-
labels. It is worth noting that the pure filtering approach also
performs well in some scenarios, but when the labeling is very
sparse, the performance is adversely affected. This suggests
that in the case of highly unlabeled data, filtering strategies
may not be sufficient to address the noise problem. Refinement
of the techniques is essential to maintain a high quality of
pseudo-labels and to ensure consistency of performance across
categories. In addition, combining these techniques with other
filtering strategies can increase their robustness.

Data Enhancement. The results show that data enhance-
ment strategies can significantly improve performance. Of the
traditional augmentation methods, AugSeg shows the most
promise for improving model performance under a variety
of labeled/unlabeled ratios. It provides a more robust method
for increasing data diversity by applying random selection
augmentation than simpler augmentation strategies such as
CutMix-Seg. When labeled data becomes scarce, at 1/16,

AugSeg continues to prove its superiority by maintaining
a higher mIoU value (79.29 mIoU ) than other classical
methods. Geometric data enrichment focuses specifically on
applying geometric transformations to enrich the spatial con-
figurations encountered by the model during training. In
terms of geometric enhancement, the ADS-SemiSeg method
achieves a mIoU of 73.40 at 1/8, which is a 3.73% improve-
ment over the Baseline, an improvement that suggests that
exploring the spatial diversity of an image can lead to some
performance gains, a factor often overlooked by traditional
methods. These results suggest that while it is still valuable to
investigate traditional enhancement, there is no doubt that geo-
metric transformations can help further expand the diversity of
training examples for more effective generalization, which is
currently underexplored, and future work should delve deeper
into exploration and geometric enhancement, as well as hybrid
methods combining traditional and geometric enhancement.

Optimization Improvement. The results of PS-MT and
Corrmatch demonstrate the efficacy of specialized loss
functions and consistency-based training strategies. PS-MT
achieves 79.76 mIoU at 1/2, illustrating the value of em-
ploying the mean-teacher framework to regularize the noisy
predictions. Corrmatch exhibits robust performance at diverse
ratios, particularly at the 1/16 ratio, attaining 76.87 mIoU
and outperforming numerous competing methods. The train-
ing strategy also plays a significant role in enhancing the
robustness of the model. ESL attains a mIoU of 79.02 at
the 1/4 ratio, a value that is only 1.6 units away from the
optimal result. This outcome suggests that a course-learning
strategy that gradually increases training difficulty is highly
effective in semi-supervised scenarios. Optimization improve-
ments, especially through tailored loss functions and strategies,
ensure model robustness. These methods are essential for
reducing overfitting to noisy pseudo-labels and thus improving
generalization to unknown data. They should therefore be
considered an important part of the semi-supervised training

(a)Original image (b)Ground truth (c)Baseline prediction(69.68)

 (f)CPCL prediction
(76.95)

(g)U2PL prediction
(82.54)

(d)UniMatch prediction
(72.65)

(e)ST++ prediction
(74.72)

Fig. 6: Visual evaluation of example images in the CityScapes dataset using the UniMatch, ST++, CPCL, and U2PL methods
with pedestrian, vehicle, road, sidewalk, vegetation, and building categories as the main representatives. Parentheses after the
methods indicate example IoU results, and we also show raw image, ground truth, and the Baseline results.
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pipeline.
Hybrid Techniques. It is evident that hybrid techniques that

integrate PL with CR, CL, or AT demonstrate considerable
potential. USRN and AEL integrate CR to solve the class
imbalance problem. AEL achieves 80.29 mIoU at the 1/2
ratio, which serves to highlight its ability to balance the
training of performing and underperforming classes adaptively.
Furthermore, hybrid techniques such as DGCL and U2PL inte-
grate CL to yield notable feature representation enhancements,
as DGCL attains 80.96 mIoU at 1/2. These approaches not
only enhance the model’s capacity to process noisy pseudo-
labels but also facilitate the model’s ability to learn meaningful
feature representations, even when labeled data is scarce.
Hybrid techniques that integrate multiple strategies are highly
effective in improving model performance in SSL environ-
ments. They provide a complementary approach, as evidenced
by the effectiveness of techniques such as AEL and DGCL in
complex real-world applications with limited labeled data.

The results presented in Table V indicate that no single tech-
nique can be considered a universal solution to the challenges
faced by SSSS. Nevertheless, the use of hybrid techniques,
which combine multiple approaches, has consistently demon-
strated superior performance compared to the use of single
techniques. These methods enhance the efficacy of PL by
optimizing feature representation, addressing class imbalance,
and mitigating the impact of unlabeled data. In particular,
pseudo-labeling refinement techniques like LogicDiag and
Cormatch, when integrated with advanced enhancement and
hybrid training strategies, represent a promising avenue for
future research in PL techniques. These methods offer robust
performance improvements, particularly in scenarios with high
ratios of unlabeled to labeled data, and are well suited for
practical applications in real-world segmentation tasks.

2) Qualitative results on Cityscapes:
In this subsection, we utilize the CityScapes dataset for

qualitative assessment and visualization to better compare the
segmentation outcomes of several state-of-the-art methods.
The methods evaluated include UniMatch, ST++, CPCL, and
U2PL. The detailed visualization results are presented in Fig. 6
and Fig. 7. Additionally, we compare these results with ground
truth and baseline methods. Subsequently, we will conduct a
detailed analysis and evaluation of the results obtained from
the different segmentation methods.

In the initial visualization example depicted in Fig. 6,
it is evident that some of the predominant categories such
as pedestrians, vehicles, vegetation, and buildings are fairly
well represented. However, infrequent categories like strollers
exhibit more noticeable misclassifications and confusion. Ad-
ditionally, the Mailbox (gray) category is often confused with
the Utility Pole category in UniMatch and is not correctly
identified by the baseline and ST++ methods. For classes
that are small but numerous, such as poles and streetlights,
although all methods can detect the presence of poles, they are
not consistently accurate in pinpointing each pole’s location.
This can be attributed to the fact that models find it easier
to segment classes occupying larger areas in the image,
whereas classes occupying smaller and more fragmented areas
pose greater prediction challenges and are more likely to be

(a)Original image (b)Ground truth (c)Baseline prediction(70.16)

 (f)CPCL prediction
(77.65)

(g)U2PL prediction
(82.68)

(d)UniMatch prediction
(73.42)

(e)ST++ prediction
(75.09)

Fig. 7: Visualization evaluation using UniMatch, ST++, CPCL,
and U2PL methods on example images in the Cityscapes
dataset.

confused with adjacent classes, leading to lower IoU and
inaccurate class prediction results.

In the second visualization example illustrated in Fig. 7, it is
evident that the predominant classes in the image are riders and
bicycles, while the minor courses are poles and traffic signs.
The methods exhibit similarly excellent performance in pre-
dicting vegetation, vehicles, roads, and buildings; however, the
prediction performance for riders is generally subpar. Although
there is no strict distinction between the rider and human
categories, the difference arises because riders are typically
adjacent to bicycles or motorcycles. Consequently, the model
must discern the semantic contextual information between
these categories. In other words, the model needs to understand
the intra-class and inter-class semantic relationships of pixels
predicted to belong to the rider category; otherwise, it may
confuse this category with the person category.

3) Distribution by Category on PASCAL VOC 2012:
In recent studies [33], [95], images from a high-quality

original training set were extracted and labeled. The exper-
iments presented in this subsection are based on this case,
where 1,464 images were extracted as labeled images, and
the remainder were labeled as unlabeled. As illustrated in
Fig. 8, we present the visualization outcomes of conventional
supervised methodologies and classical PL techniques (Cor-
rmatch [71] as a case in point) on the PASCAL VOC with
disparate class data distributions, which IoU assesses as a
The evaluation metric demonstrates that the PL methods align
with the supervised learning methods in terms of the overall
trend, as illustrated in the figure. Notably, the PL exhibits
superior performance in several classes, particularly in an
imbalanced data distribution between classes. To illustrate, the
IoU for the airplane and cow classes demonstrates a notable
enhancement under the PL. Conversely, certain courses with
high degrees of similarity (e.g., cat and dog) exhibit a narrower
gap between the supervised and PL, which can be attributed
to the inherent complexity of the training data. Furthermore,
the figure’s fluctuations demonstrate the sensitivity of different
categories in data distribution. In the case of sparser category
data, the PL method can effectively utilize unlabelled data by
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Fig. 8: The illustration provides a comprehensive representa-
tion of the trends in category data distribution for the experi-
mental results of the supervised and classical PL methods (in
the case of Corrmatch [71]) under the PASCAL VOC 2012 val
dataset. (Indicator: IoU ). Labeled images are selected from
original training set. (best viewed in color).

generating pseudo-labels, thereby compensating for the effect
of insufficient labels in supervised methods.

VI. CHALLENGES AND OPPORTUNITIES

This section highlights some of the most promising and
valuable PL research avenues in the domain of SSSS, as shown
in detail in Fig. 9.

A. Quality enhancement with foundation models
Although current PL methods have made significant

progress in typical SSSS, the choice of their underlying
models is still limited, often relying on generic architectures
such as ResNet [210] or Vision Transformer [211]. These
architectures, although highly capable of feature extraction, are
not optimized for the specific challenges of the pseudo-label
generation process. For example, existing methods are usually
based on static feature extraction and label generation, lacking
dynamic tuning and interactive feedback mechanisms, whereas
the accuracy of pseudo-label generation is critical to the overall
performance of semantic segmentation. In the initial training
phase, incorrect pseudo-labels may cause the training model
to fall into local optimum and reduce overall performance.

To address these issues, new techniques such as interactive
cues in combination with base models such as Segment
Anything Model (SAM) [212] are used. In existing research,
SAM can generate high-quality seeds or cues applied to
weakly- [213] or un-supervised [214] segmentation. At
the same time, SAM fine-tunes the behavior of the model
through interactive cues, which can provide more flexibility
and semantic information support for pseudo labels generation,
and has now been applied as a guide to the task of SSL
referring expression segmentation [215]. While the application
level has only been used as an enhancement aid module for
medical image segmentation [216]. Future research on PL in
SSSS can explore how to combine SAM as an auxiliary model
with the iterative pseudo-label generation process and use its
dynamic cueing function to further improve the performance
of online SSSS by gradually refining from the initial rough
pseudo-label combined with the recurrent strategy.

B. Multimodal Fusion

So far, most existing PL in SSSS techniques often face
problems such as inter-class imbalance [180], boundary am-
biguity [217], and pseudo labels noise [59]. These challenges
significantly affect the classification accuracy of the models
in complex scenarios. In addition, the process of PL relies
on high-confidence regions, leading to the under-utilization of
unlabelled data. Although a teacher model [84] is introduced
to improve the quality of pseudo labels, it is still challenging
to scale this approach across different data modalities. Future
research can draw on the development of cross-modal learning
and multimodal fusion techniques [218]–[221] to improve
pseudo labels quality and segmentation performance by in-
troducing multimodal data (depth maps, infrared images, text
descriptions). For example, significant progress has been made
in multimodal fusion in target detection [222] and image-
text alignment tasks [223]. Different modalities can provide
complementary semantic information, effectively enhancing
the robustness of the model when a single modality is limited.

Designing modular networks with a unified encoder struc-
ture [224] can also be a solution because it has shown its
advantages for fine-grained semantic processing in other vision
tasks as well. For example, in text-video segmentation [225]
and classification tasks [226], modular networks can better
capture local information and perform overall optimization by
processing different modalities or sub-tasks separately, without
the need to design separate models for each modality. Intro-
ducing it into pseudo-label generation can improve problems
such as boundary-blurring by adaptive processing of different
regions or semantic categories, and the model can use com-
plementary multimodal information to generate more accurate
pseudo-labels. Especially when segmenting complex scenes,
the multimodal fusion strategy [227] is expected to adjust
the segmentation accuracy for specific regions based on cues
or interactions, enhance the collaborative reasoning ability
between different modalities, and further improve the overall
quality of pseudo-labels. In addition, inspired by the Large
Language Model (LLM) [228], new directions of semantic
alignment and fusion can be explored in the future to optimize
the pseudo labels generation process further.

C. Domain Adaptation

In laboratory environments, current PL methods mainly rely
on the assumption that the training and test data are in the
same distribution (same domain), which has the advantage of
ensuring performance consistency when the trained model is
applied to the test. In practice, however, different environments
(e.g., weather changes, lighting conditions, fog conditions,
camera angles, etc.) can lead to significant domain differences,
which usually trigger a degradation in the quality of the
pseudo-labels and thus affect the performance of the model.
Therefore, learning how to address the large domain gaps
between data from different sources is one of the key issues
to improve the generalisability of models.

Some existing works have attempted to narrow the gap
between different data distributions through domain adaptation
[229] techniques. For example, [230] has been conducted to
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Fig. 9: This illustration details six possible future research directions for PL technology in SSSS for its future development
and practical application (best viewed in color).

reduce the distributional differences between different data
domains through adversarial learning and self-supervised.
However, most approaches rely on a large amount of compu-
tational resources and their effectiveness is still limited when
dealing with highly variable domains. Recently, pre-trained
visual models have shown great potential in domain migration
tasks [231]–[233]. These models have stronger generalization
capabilities due to training on large-scale, diverse data and can
help cope with the domain drift problem. Some approaches
apply pre-trained models to specific tasks through full fine-
tuning techniques [234], but this triggers high computational
overheads and can compromise the generalization capabilities
contained in pre-trained models. In the future, a domain
adaptive approach based on lightweight prompt learning strate-
gies may be an effective research path [235]. This approach
adapts to new domains at a very small computational cost
by introducing a small number of learnable parameters, while
retaining the knowledge of the pre-trained model, and has
been preliminarily validated in tasks such as object detection
[236] and cross-modal learning [237]. In PL of SSSS, guiding
the pseudo-label generation process through the cue learning
strategy can better cope with the domain migration problem,
and improve the performance in the new domain.

D. Explore Complex Scenarios
Most PL techniques efforts focus on relatively simple,

existing standard datasets, such as PASCAL VOC [209], which
are usually of moderate size and have a single scene. In
practice, it is often necessary to deal with more complex
scenes that include not only diverse objects and backgrounds,
but may also be accompanied by more occlusions, extreme
lighting variations, and dense object interactions, which place
higher demands on existing PL methods. So researchers have
begun to explore more challenging datasets and scenarios. For
example, large-scale datasets such as Mapillary Vistas [196]
and ADE20K [189] provide test benchmarks for complex
scene segmentation. The team building Cityscapes [17] has
similarly introduced the datasets Raincityscapes [193] in rain

and Foggycityscapes [194] in fog, which, compared to com-
mon These datasets contain more diverse scenes, more types
of objects, and higher resolution than common, and better
simulate the actual environments in the real world. Although
the application of PL on these datasets is still limited, some
preliminary studies have shown their potential. [132] achieved
preliminary results by generating pseudo-labels and perform-
ing adaptive learning on large-scale datasets. However, due
to the low accuracy of pseudo-labels on large-scale complex
datasets, exploring SSSS in more diverse scenarios [238] still
has great research potential.

E. Multitasking Coordination
Segmentation in practice often needs to work in concert

with other visual tasks (detection, classification) to achieve
a more comprehensive visual understanding. However, in the
pseudo-label generation, most of the current generated labels
are usually optimized for a single task only (e.g., SSSS),
neglecting information sharing and co-optimization with other
tasks. Given that multi-task learning [239] has shown its
potential in other visual tasks. [240] significantly improved
the performance of both detection and segmentation tasks by
jointly learning them through multitasking.

Considering that in complex scenes, single-task pseudo-
label generation may be inaccurate due to the lack of con-
textual information, it makes sense to explore how to pro-
vide more accurate and comprehensive semantic information
through a multi-task learning framework. Some recent works
have made valuable attempts. For example, e.g., co-training
semantic segmentation with tasks such as target detection and
scene understanding [201] enables the model to generate more
accurate pseudo-labels based on shared feature representations
and using output information from other tasks. In the future,
PL can draw on the strategy of multi-task coordination [241],
which is expected to generate more accurate pseudo-labels and
improve the accuracy and robustness of segmentation through
multi-tasks sharing valuable and complementary contextual
information. Multi-task optimization frameworks proposed in
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recent years, such as Quadronet [242] and UPerNet [243], have
shown their potential in visual tasks. These frameworks enable
information transfer between tasks by sharing convolutional
features or Transformer modules.

F. Engage in the active selection and refine the process

Although some typical approaches have achieved encour-
aging results, there are still some limitations and challenges
in the current PL generation process. Since the generation
of pseudo labels is based on model prediction, if the initial
performance of the model is poor, the quality of the corre-
sponding pseudo-labels will also be affected [59]. In addition,
pseudo-labels generated in hard-to-distinguish regions or class-
imbalanced scenarios often contain errors [180], which may
negatively affect the model training.

To better address this problem, Active Learning (AL) [244]
may be a very relevant solution to the SSL task, which,
instead of training the model on the entire dataset, focuses
on selecting a subset of the most informative data points for
requesting additional labels, allowing the model to learn from
the most valuable examples efficiently and cost-effectively.
AL has been applied to tasks such as image classification
[245], object detection [246], etc. In the future, AL-based
active selection and pseudo labels refinement strategies can
be combined to pool resources more effectively, which in
turn improves the quality of pseudo-labels and avoids the
interference of incorrect labels on model training.

VII. SUMMARY

This review systematically summarizes and categorizes
pseudo-labeling solutions in the domain of semi-supervised
semantic segmentation over recent years. It integrates vari-
ous methods and their enhancements and also provides an
overview of hybrid techniques combining pseudo-labeling
with other semi-supervised segmentation strategies. The paper
draws reliable conclusions from both quantitative experiments
and qualitative assessments, highlighting the remaining chal-
lenges and potential future directions in this field. Additionally,
it briefly discusses some emerging approaches in the current
landscape of semi-supervised segmentation.

After thorough analysis, we conclude that enhancing the
current PL methods in SSSS can be approached from the
model perspective, the label refine perspective, the data per-
spective, and optimization perspective. Our experiments in-
dicate that generating various hybrid method combinations
holds great promise, particularly when combining consistency
regularisation with contrast learning. Methods for refining
pseudo-labels have also demonstrated outstanding results. Fur-
thermore, enhancing data perturbation and optimizing training
strategies are promising avenues for future advancement.

Although current PL techniques have advanced significantly
in SSSS, their effectiveness remains constrained in complex
scenarios, particularly when dealing with domain shifts or
extreme conditions. In such cases, the generalization capacity
and precision of pseudo-labels are often lacking. We highlight
the importance of investigating complex scenarios and discuss
strategies to enhance pseudo-label quality via active learning,

domain adaptation, and multimodal data fusion. Given the
challenges of handling complex real-world situations with
current pseudo-labeling and optimization techniques, future
PL approaches need to develop more adaptable and intelli-
gent methods to actively select the most representative data
samples and adaptively adjust them by integrating inter-
domain variations to boost model robustness and generaliza-
tion. Additionally, considering training costs, we propose that
exploring more efficient network architectures and multitask-
ing approaches is valuable for future applications in specific
domains.
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