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Frequency-Guided Spatial Adaptation for
Camouflaged Object Detection

Shizhou Zhang , Dexuan Kong , Yinghui Xing , Member, IEEE, Yue Lu , Lingyan Ran , Guoqiang Liang ,
Hexu Wang, and Yanning Zhang , Senior Member, IEEE

Abstract—Camouflaged object detection (COD) aims to segment
camouflaged objects which exhibit very similar patterns with the
surrounding environment. Recent research works have shown
that enhancing the feature representation via the frequency
information can greatly alleviate the ambiguity problem between
the foreground objects and the background. With the emergence
of vision foundation models, like InternImage, Segment Anything
Model etc, adapting the pretrained model on COD tasks with
a lightweight adapter module shows a novel and promising
research direction. Existing adapter modules mainly care about
the feature adaptation in the spatial domain. In this paper, we
propose a novel frequency-guided spatial adaptation method for
COD task. Specifically, we transform the input features of the
adapter into frequency domain. By grouping and interacting with
frequency components located within non overlapping circles in
the spectrogram, different frequency components are dynamically
enhanced or weakened, making the intensity of image details
and contour features adaptively adjusted. At the same time,
the features that are conducive to distinguishing object and
background are highlighted, indirectly implying the position and
shape of camouflaged object. We conduct extensive experiments on
four widely adopted benchmark datasets and the proposed method
outperforms 26 state-of-the-art methods with large margins. Code
will be released.

Index Terms—Camouflaged object detection, frequency-guided,
pretrained foundation model, spatial adaptation.
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I. INTRODUCTION

CAMOUFLAGED object detection (COD), which has
wide downstream applications such as medical segmenta-

tion [1], [2] and recreational art [3], aims to segment the objects
which are perfectly embedded in their surrounding environment.
Recent years have witnessed the great progress of COD, it re-
mains a challenging task due to the low contrast appearances
between the concealed objects and the background. In addition,
the semantic categories of the objects lie between a wide range
from naturally camouflaged objects such as mammals or insects
hiding themselves from their predators, to artificially camou-
flaged objects such as soldiers on the battlefields or human body
painting arts. The diverse types of objects with various shapes,
sizes and textures further increases the difficulties of the COD
task.

From one hand, some recent methods try to design pro-
gressively coarse to fine feature enhancement process [4], [5]
or to utilize extra edge information [6] to locate accurate
boundaries from the spatial/RGB domain information of an
image. While other works propose to introduce clues in fre-
quency domain [7], [8], [9], as the frequency enhanced fea-
tures are more discriminative between the concealed objects and
background.

From the other hand, with the emergence of large scale pre-
trained vision foundation models, such as InternImage [10] and
Segment Anything Model (SAM) [11], a promising research
paradigm which is prevalent on almost all vision tasks is that
adapting the foundation model on the downstream tasks with a
small portion of extra trainable parameters or architectures, e.g.
prompts and adapters, while the parameters of the pretrained
model kept frozen. Existing task-specific adapters broadly fall
into three categories: series adapter [12], parallel adapter [12]
and LoRA [13]. To introduce the image-related inductive bi-
ases into the pretrained ViT model for pixel-wise dense pre-
diction tasks, [14] proposed a specific parallel ViT-Adapter to
further aggregate multi-scale context. Current adapters are de-
vised to compensate the features or weights all from the spatial
domain. However, crucial clues for the downstream COD task,
such as subtle variations in textures and patterns, may not be
easily observed in the spatial domain but can be revealed by the
unique spectral characteristics in the frequency domain. There-
fore, adapting the pretrained foundation model from the spa-
tial domain alone can not take the full advantage of the merits
brought by the frequency domain information which is espe-
cially required for the COD task.
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Fig. 1. Visualization and comparison of feature maps obtained after adapter
tuning on COD task.

In this paper, we propose a novel adaptation model named as
frequency-guided spatial adaptation network (FGSA-Net) for
COD task. Firstly, we devise a frequency-guided spatial atten-
tion (FGSAttn) module by transforming the input features of the
adapter into frequency domain. Then by grouping and interact-
ing with frequency components located within non overlapping
circles in the spectrogram, different frequency components are
enhanced or weakened, making the intensity of image details
and contour features adaptively adjusted.

Based on the FGSAttn module and the multi-scale context
aggregation as in ViT-Adapter, we further propose a Frequency-
Based Nuances Mining (FBNM) module which aims to mining
subtle differences between foreground and background, and a
Frequency-Based Feature Enhancement (FBFE) module which
extracts and fuses multi-scale features containing general knowl-
edge of the pretrained model and adaptation components learned
from the new data of downstream COD task. As can be seen
from Fig. 2, the FBNM module is inserted after the patch
embedding layer and the FBFE module is inserted into the pre-
trained ViT backbone model after each K layers. During train-
ing, only the parameters of FBNM and FBFE modules are op-
timized while the parameters of pretrained ViT model are kept
frozen. With only about 7% tunable parameters (over the total
parameters of the pretrained model), our proposed FGSA-Net
achieves state-of-the-art performances on four widely adopted
benchmark datasets of COD and outperforms the spatial adap-
tation counterparts with a large margin. Fig. 1 illustrates the
obtained feature maps after adaptation, it can be seen that our
proposed novel adaptation mechanism clearly concentrate more
on the concealed objects compared with other spatial adaptation
methods.

To summarize, the contributions of this paper are threefolds,
� We propose a novel frequency-guided spatial adaptation

network, which combines the advantage of general knowl-
edge of vision foundation model and task-specific features
learned from the new data of downstream COD task.

� A frequency-guided spatial attention module is devised to
adapt the pretrained foundation model from spatial domain
while guided by the adaptively adjusted frequency compo-
nents to focus more on the camouflaged regions.

� The proposed method greatly outperforms the baseline
methods and achieves state-of-the-art performances on
four widely adopted COD benchmark datasets.

The rest of the paper is organized as follows, Section II re-
views the relevant works of our paper. Section III elaborates each
component of the proposed method. In Section IV, we conduct
thorough experiments on four widely-used benchmark datasets
to verify the superiority of our method and further analyze the ef-
fectiveness of each component. Finally, we draw the conclusion
of the paper in Section V.

II. RELATED WORK

A. Camouflaged Object Detection

Numerous efforts have been undertaken in the field of cam-
ouflaged object detection [4], [5], [6], [15], [16], [17], [18],
[19], [20], [21], [22]. In order to obtain accurate boundary, [15]
promote the model to generate features that highlight object
structure for accurate boundary localization of camouflaged ob-
jects. Ref. [6] decouple an image into two feature maps and
recurrently reason their high-order relations through graphs for
roughly locating the target and accurately capturing its bound-
ary details. Ref. [21] combine probabilistic-derived uncertainty
and deterministic-derived edge information to accurately detect
concealed objects. To capture rich features of camouflaged ob-
jects, [18] integrate and fuse multi-level image features to yield
multi-scale representations for exploiting rich global context in-
formation. Ref. [5] iteratively refine low-resolution representa-
tions by high-resolution features to extract high-resolution tex-
ture details and avoid the detail degradation. Ref. [22] leverage
the spatial organization of textons in the foreground and back-
ground regions as discriminative cues for camouflaged object
detection. Additionally, some recent works [7], [8] investigate
that clues in frequency domain can help the feature enhancement
of concealed objects.

B. Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning aims to adapt pretrained mod-
els to downstream tasks by inserting a few learnable pa-
rameters [13], [23], [24], [25], [26], [27]. Ref. [27] propose
lightweight adapters for Transformers [28] in the filed of
NLP. [23] introduce learnable tokens (i.e. prompts) into Vision
Transformers [29]. Ref. [13] inject trainable rank decomposi-
tion matrices into each layer of the Transformer architecture.
All the methods only update the introduced small number of pa-
rameters (i.e. adapters, prompts, etc.) while keep the pretrained
parameters fixed. Consequently, the training process requires
much less memory and computation costs than fine-tuning the
whole model. However, existing adapters deal with the feature
adaptation problem from the spatial domain alone.

C. Frequency-Based Methods

Since the features of camouflaged objects and the background
are more discriminative in the frequency domain, a line of ap-
proaches [7], [8], [9], [30], [31], [32], [33] dig frequency clues
for camouflaged object detection or other tasks to enhance the
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Fig. 2. Overall framework of our proposed FGSA-Net. (a) The main architecture. (b) Frequency-based nuances mining module. (c) Frequency-based feature
enhancement module.

feature representation. Ref. [7] adopt the offline discrete co-
sine transform to extract frequency features, and then fuse the
features from RGB domain and frequency domain. Ref. [9] ag-
gregate multi-scale features from a frequency perspective and
enhance the features of the learned important frequency com-
ponents. Ref. [8] utilize the octave convolution [34] in the fre-
quency perception module for coarse positioning, and combine
high-level features with shallow features to achieve the detailed
correction of the camouflaged objects. Different from the atten-
tion modules only performed in RGB domain, we exploit the
spatial adapter while guided with frequency domain informa-
tion, which is more helpful to distinguish between camouflaged
objects and the background.

III. METHODOLOGY

A. Overview

As a typical low contrast structural segmentation task, COD
methods require not only low-level structural details but also
global context information. However, available adaptation mod-
els like ViT-adapter [14] and SAM-adapter [35], only consider
global context information in spatial domain, limiting their abil-
ity to locate subtle differences between foreground and back-
ground. To accurately represent refined structure of camouflaged
objects, we resort to extract and enhance detail information from
the frequency perspective to design a frequency-guided spa-
tial adapter (FGSA-Net). The overall architecture is shown in
Fig. 2(a), including a large pretrained ViT model, a lightweight
adapter module consist of frequency-based nuances mining
(FBNM) and frequency-based feature enhancement (FBFE), as

well as a detection head for COD. Specifically, as shown in Fig. 3,
we devise the frequency-guided spatial attention (FGSAttn)
module to concentrate more on the concealed objects by dy-
namically adjusting the frequency components. Based on the
FGSAttn, as detailed in Fig. 2(b) and (c), two elaborate modules,
i.e., FBNM and FBFE, responsible for subtle feature extraction
and enhancement, are proposed to serve as the adapter. Among
them, the FBNM module aims to receive original input images
and serialized tokens to capture prior knowledge of the subtle
differences between the foreground and background. Then, we
evenly split the transformer layers of ViT model into M groups,
each of which contains K layers. The FBFE module is inserted
into the ViT model after each group and performs interaction
operations on the general knowledge from the pretrained ViT
branch and the task-specific knowledge from the adapter branch
to recalibrate the feature distribution. Finally, the hierarchical
features output by the last FBFE module are input into the de-
tection head to generate more refined and accurate prediction
map.

B. Frequency-Guided Spatial Attention Module

The detailed architecture of frequency-guided spatial at-
tention (FGSAttn) module is illustrated in Fig. 3. The input
feature F ∈ R

H×W×C are processed by average-pooling and
max-pooling operations along the channel dimension, and the
pooled features are then combined through an element-wise
summation to obtain a single channel most distinctive features
Fg ∈ R

H×W×1. It can be formulated as:

Fg = AvgPool(F) +MaxPool(F). (1)
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Fig. 3. The detailed architecture of our proposed frequency-guided spatial attention (FGSAttn) Module.

Then, Fg is transformed into the frequency domain by
Fourier transform to obtain its amplitude spectrum A(Fg) ∈
R

(2R)×(2R)×1 and the phase spectrum P(Fg) ∈ R
(2R)×(2R)×1,

FT (Fg)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

Fg(h,w)e
−j2π( h

H u+ w
W v),

A(Fg)(u, v) =
√

R2(Fg)(u, v) + I2(Fg)(u, v),

P(Fg)(u, v) = arctan

[
I(Fg)(u, v)

R(Fg)(u, v)

]
, (2)

whereFT (.) represents the fast Fourier transform of the feature.
R(Fg) and I(Fg) are the real and imaginary part of FT (Fg),
respectively.

Previous studies [30], [36] have proved that the amplitude
component obtained by the Fourier transform contains more
critical information for the object. Hence, in our work, we
mainly explore the influence of different frequency components
in the amplitude spectrum while keeping the phase spectrum
unchanged.

After frequency centralization, the origin point in the am-
plitude spectrum represents center frequency. The distances
between a certain point and the origin denotes its frequency
component. Therefore, circles with different diameters in the
amplitude spectrum correspond to different frequency compo-
nents. When they are transformed back to the spatial domain,
they represent different type of features, such as the approxi-
mate shape or edge details of objects. In our method, we de-
compose the amplitude spectrum into many non-overlapping
circular rings with a width of d along the radius dimen-
sion, and the hyperparameter d defines the range of frequency
components.

We group the features located in the same circular ring into one
channel and obtain Ffreq ∈ R

P×(R/d)). P denotes the number
of frequency components on each channel. Then the GAP (.)
and FC(.) are performed to generate weights for adaptively
recalibrating the responses of different frequency components.
Thus, mapping the adjusted frequency components back into
the spatial domain will change the spatial feature values on the
feature map, i.e. frequency-guided spatial adaptation, which can
be expressed as:

F′
freq = Ffreq ⊗ FC(GAP (Ffreq)) (3)

where “⊗” denotes element-wise broadcasted multiplication.
GAP (.) and FC(.) represent global average pooling and
sequences of 1× 1 convolutions followed by a LeakyReLU ac-
tivation function. Finally, the processed features F′

freq are re-
arranged and stacked sequentially to get a new amplitude spec-
trum A′(Fg). Combined with original phase spectrum P(Fg),
the spatial attention map M ∈ R

H×W×1 is then obtained by
inverse Fourier transform,

M = MinMax(FT −1(A′(Fg),P(Fg))). (4)

The final output Fout is

Fout = F+M⊗ F, (5)

where FT −1 represents the inverse Fourier transform. “⊗” de-
notes the element-wise broadcasted multiplication along the
channel dimension.

C. Frequency-Based Nuances Mining Module

Since camouflaged objects always exhibit very similar ap-
pearance features with nearby noisy objects and background,
the slight differences are difficult to be distinguished by the spa-
tial domain features of the foundation model alone. We design a
Frequency-Based Nuances Mining (FBNM) module aiming at
mining nuances between foreground and background, and the
detailed architecture is shown in Fig. 2(b).

Specifically, a standard convolution stem borrowed from
ResNet is employed to model the local spatial contexts of
the input image, which consists of three convolutions and a
max-pooling layer. After that, three consecutive sequences are
applied to gradually aggregate multi-scale features with three
resolutions of 1/8, 1/16, and 1/32, obtaining a feature pyra-
mid of similar resolutions to FPN [37], which is widely used
in dense prediction tasks. Each sequence contains a 3×3 convo-
lution kernel to reduce the scale of the feature map, followed by
a FGSAttn module which leverages the frequency components
to adjust feature layers representing different visual attributes
from a global perspective. This can effectively highlight the nu-
ance parts in texture-rich regions to distinguish the foreground
and background.

Next, we project the feature maps to the same dimen-
sion D using several 1x1 convolution layers. After a flatten
layer and a concatenate layer, a feature pyramid Fi

adapter ∈
R

(HW
82

+HW
162

+HW
322

)×D can be then obtained. On one hand, it
serves as the input for the next adapter module. On the other
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hand, it is injected into serialized tokens F 0
vit via cross-attention

mechanism to obtain F i
vit that absorb task related knowledge,

which will be used as the input for the successive layers of the
pretrained ViT backbone.

D. Frequency-Based Feature Enhancement Module

ViT can encode the relationships between all input tokens.
However, the feature differences among different tokens in spa-
tial domain are very slight in COD task, making it difficult for
the model to discriminate candidate targets. Thus it is non-
trivial to use the more discriminative features learned from
the adapter stream to enhance the ViT stream. We design the
frequency-based feature enhancement (FBFE) module to en-
hance the features of ViT stream, and take full advantages of
both the general knowledge and task-related knowledge.

As shown in Fig. 2(c), FGSAttn is first applied to the out-
put of pretrained ViT model Fi

vit, which aims to enhance the
target-relevant regions and at the same time suppress background
interference with the guidance of frequency domain information.
Then, we take Fi

adapter as query to extract the most related in-

formation from the adjusted general knowledge F̂i
vit, and obtain

the updated adapter feature Fi+1
adapter,

F̂i
adapter = Fi

adapter +Attention(Fi
adapter, F̂

i
vit)

Fi+1
adapter = F̂i

adapter + FFN(F̂i
adapter), (6)

where Attention(·, ·) denotes cross-attention mechanism.
FFN(·) denotes the convolutional feed-forward network to
remedy the defect of fixed-size position embeddings [38]. Af-
ter that, the updated adapter feature Fi+1

adapter acts as key and

value, and F̂i
vit as query to inject task-related knowledge into

ViT feature Fi+1
vit , which will be fed back into the backbone.

This process can be expressed as follows:

Fi+1
vit = F̂i

vit +Attention(F̂i
vit,F

i+1
adapter). (7)

Note that the last FBFE module only outputs the adapter features,
which are used for detection.

E. Loss Function

During training, camouflaged images are fed into both the
backbone and adapter simultaneously. We only optimize the pa-
rameters of the adapter module and detection head, while keep-
ing the parameters of the original pretrained model frozen, so
that the power of the ViT foundation model can be efficiently
transferred to downstream COD task with little computational
cost. Our entire training process is supervised by the combi-
nation of weighted binary cross-entropy loss (Lw

BCE) [39] and
weighted intersection-over-union loss (Lw

IOU ) [39], which can
be formulated as L = Lw

BCE + Lw
IOU , forcing the model to pay

more attention to hard pixels.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: The experiments are conducted on four
benchmark datasets: CHAMELEON [40], CAMO [41],
COD10 K [42], and NC4K [43]. CHAMELEON contains 76
images for test only. While CAMO has 1,000 images for train-
ing, and 250 images for testing, consisting of eight categories
which fall into both natural and artificial camouflage types.
COD10 K [42] is the largest COD dataset till now, consisting of
COD10K-Train (3,040 images) and COD10K-Test (2,026 im-
ages). NC4K [43] served as the largest testing dataset which
includes 4,121 samples and are typically used to evaluate the
generalization ability of models. Following experimental proto-
cols in [42], our method is trained on the training sets of CAMO
and COD10 K, and the detection performance on the whole
CHAMELEON and NC4K datasets, together with the test sets
of CAMO and COD10 K are reported.

2) Evaluation metrics: Four commonly used metrics are
adopted for evaluation: Structure measure (Sα) [44], Mean
enhanced-alignment measure (Eφ) [45], weighted F-measure
(Fw

β ) [46], and mean absolute error (M ) [47].
3) Training details: In the training phase, we use Vision

Transformer [29] as the foundation model and UperNet [48]
as the COD head. The Vision Transformer is pretrained with
large-scale multi-modal data as in Uni-Perceiver [49] and kept
frozen once pretrained. The parameters of adapter and the COD
head are both randomly initialized. We employ an AdamW op-
timizer with initial learning rate of 6× 10−5 and a weight decay
of 0.05. They are trained 200 epochs with a batch size of 2. For
testing, the images are resized to 512 ×512 to input into the
model, and the outputs are resized back to the original size.

4) Competitors: We compare our method with 26 state-
of-the-art COD methods, including: SINet [42], PraNet [1],
TINet [17], PFNet [50], UGTR [19], C2FNet [18], S-MGL [6],
R-MGL [6], LSR [43], JCSOD [20], ERRNet [51], BASNet [52],
SINetV2 [4], ZoomNet [53], PENet [54], MFFN [55], FSP-
Net [56], HitNet [5], DINet [57], DCT-Net [22], UEDG [21],
FDNet [7], FBNet [9], FPNet [8], FEDER-MS-4 [58], SAM-
Adapter [35]. Among these SOTA methods, it is worth noting
that FDNet [7], FBNet [9], FPNet [8], FEDER-MS-4 [58] all
introduce frequency clue from various aspects in their methods.
And SAM-Adapter [35] proposed to adapt the Segment Any-
thing foundation model from a spatial perspective without any
guidance. For a fair comparison, all results are either provided
by the published paper or reproduced by an open-source model
re-trained on the same training set with recommended settings.

B. Comparison With the State-of-the-Arts Methods

1) Quantitative evaluation: Table I reports the detailed com-
parision results of our FGSA-Net against other 26 state-of-the-
art methods on four benchmark datasets. It can be seen that
our proposed method outperforms all the comparison SOTA
methods with a large margin on all the benchmark datasets.
For example, our method achieves 0.893 Sα and 0.849 Fw

β on
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TABLE I
QUANTITATIVE COMPARISON OF OUR FGSA-NET AND 26 SOTA METHODS FOR COD ON FOUR BENCHMARK DATASETS

COD10K dataset, greatly outperforms the second best SAM-
adapter method. And on NC4K dataset, our method sets a re-
markable record to increase Sα by 2.50%, Eφ by 2.48%, Fw

β by
6.51% and lowers the MAE error by 34.3%, compared with the
second best UEDG method. It is worth noting that, our method
greatly outperforms SAM-adapter method which is also based
on a vision foundation model (SAM) and tuned with a spatial
adapter. As SAM-Adapter mainly learns task specific knowl-
edge and injects novel knowledge of downstream task into the
model through the adapter from the perspective of spatial do-
main alone. Due to the high similarity between the camouflaged
object and the surrounding environment, spatial adaptation with
the guidance from spatial domain directly is easily confused
and can not effectively extract subtle features. By contrast, in-
troducing task specific knowledge into the model under the guid-
ance of frequency domain can enable the network to pay more
attention to concealed targets. Furthermore, our method also
outperforms all the existing frequency-based methods, namely
FDNet, FBNet, FPNet and FEDER-MS-4, on all four standard
metrics. Compared to other frequency-based methods, our ad-
vantage lies in fully utilizing the general knowledge of vision
foundation model, proving that the designed adapter can effec-
tively transfer vision foundation model into downstream tasks
such as COD.

2) Qualitative evaluation: In Fig. 4, we show the qualitative
comparison of our method with several representative SOTA
methods on some challenging situations. Benefiting from the
discriminative frequency information, our FGSA-Net achieves
more competitive visual performance mainly in the following
aspects: More accurate localization and complete prediction of

targets in low contrast scenes (Row 1), stronger interference sup-
pression when there are confusing objects in the surrounding
environment (Row 2) and more precise recognition of complex
and fine structure, such as slender details of the object (Row 3).
Moreover, our method is also effective in detecting other chal-
lenging situations such as indefinable boundary, small object,
multiple objects and occlusion (Row 4 to Row 7). The impres-
sive prediction results further verified the effectiveness of the
frequency-guided spatial adaptation network.

C. Further Analysis

1) Effectiveness of frequency-guided adapter: To show the
effectiveness of our FGSA-Net, we implement other four types
of adapters, namely Series-Adapter, Parallel-Adapter, LoRA
and ViT-Adapter, while keeping the same pretrained foundation
model and pretrained weights with our method. The results in
Table II show that the proposed FGSA-Net can greatly out-
perform all the spatial adaptation variants on four benchmark
datasets, indicating that through frequency-guided spatial adap-
tation on COD task, the general knowledge can be better trans-
ferred to deal with the COD problem.

2) Core operation in FGSAttn: To show the advantage of our
frequency-based attention over other spatial attention, we com-
pare our method with two variants, which are replacing core
operation in FGSAttn with a regular convolution module and
a deformable convolution module, respectively. The results are
shown in Table III. It can be seen that our method performs bet-
ter on all datasets compared with other variants. We analyze the
reason is that the brightness difference between camouflaged

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on January 19,2025 at 06:06:26 UTC from IEEE Xplore.  Restrictions apply. 



78 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

Fig. 4. Visual comparison of our method with six representative state-of-the-art methods. Our method is capable of tackling challenging cases (e.g., low contrast,
confusing objects, complex and fine structure, indefinable boundary, small object, multiple objects, and occlusion).

TABLE II
COMPARISON OF DIFFERENT PARAMETER-EFFICIENT TUNING METHODS WITH THE SAME PRETRAINED MODEL ON FOUR BENCHMARK DATASETS

TABLE III
ABLATION STUDIES OF THE CORE OPERATION IN FGSATTN

object and surrounding environment is very small in the spatial
domain, and attention maps generated by using convolution op-
erations based on spatial domain may be confused, making it
difficult for the model to effectively focus on the camouflaged
object and detailed clues.

3) Effect of FGSAttn on FBNM and FBFE: To show how
much our proposed FGSAttn takes effect on FBNM and FBFE
module, we evaluate our method while removing FGSAttn in

FBNM and FBFE respectively. As can be seen from Table IV
that removing FGSAttn in either module would get a significant
degradation of our FGSA-Net.

4) Feature map visualization after adaptation: Fig. 1 illus-
trates some representative cases of the obtained feature maps
after adapter tuning on COD task. It is noticeable that series-
adapter, parallel-adapter and LoRA can only focus on the bound-
aries of the target roughly, while ViT-adapter highlights the target
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TABLE IV
ABLATION STUDIES OF FGSATTN IN DIFFERENT MODULES

TABLE V
EFFECTIVENESS OF VARIOUS INPUT SIZES

TABLE VI
EFFECTIVENESS OF DIFFERENT PRETRAINED WEIGHTS

but also generates more background noise, which is detrimental
to the model’s localization and recognition capabilities. Only our
proposed frequency-guided spatial adaptation method clearly
tunes the pretrained model to focus more on the concealed
foreground objects compared with other four spatial adaptation
counterparts.

5) Various input image sizes: To explore the impact of various
input image sizes on model performance, we present the results
of our model at different input sizes, including 352 × 352, 384
× 384, 416 × 416 and 512 × 512, which are illustrated in Ta-
ble V. As can be seen, the performance of the model gradually
improves with the increase of input image resolution, and our
model performs the best at a setting of 512 × 512. It is worth
noting that when decreasing input size into 416 × 416, 384 ×
384, 352 × 352, our method also achieve SOTA results on three
datasets(CAMO, COD10K and NC4K) and competitive perfor-
mance on CHAMELEON dataset, even though other models use
larger input sizes, such as FPNet use 512 × 512, HitNet use 704
× 704, and ZoomNet use multiple inputs (maximum 576× 576).

6) Different pretrained weights: In order to explore the
impact of different pretrained weights, we experiment with
ViT as the backbone and initialize it with different pretrained
weights, including AugReg [59] which trained on ImageNet-
22 K, BEiT [60] which trained on ImageNet-1 K, SAM [11]

which trained on 11 million images and 1.1 billion masks,
and Uni-Perceiver [49] which is trained with large scale multi-
modal data. As summarized in Table VI, we find that using
various pretrained weights both achieve competitive perfor-
mance, which verifies the effectiveness of our designed adapter
for different pretrained backbone. Among them, the back-
bone pretrained with multi-modal data show the best perfor-
mance. It is worth noting that our method significantly outper-
forms the SAM-Adapter method by utilizing the SAM initial-
ized backbone, demonstrating the superiority of our proposed
FGSA-Net.

7) Different K and M: For the pretrained ViT model with
L=24, we study the effect of K and M , and the results are
shown in Table VII. It can be seen that the model achieves opti-
mal performance on most datasets and metrics when K=6 and
M=4, and dividing into more groups cannot bring significant
gains. Therefore, we empirically set K=6 and M=4.

8) Different d in the amplitude decomposition: The specific
value for width d represents the range of frequency components
contained in each channel. To explore the influence of d in the
amplitude decomposition, we present the results of our model
at different widths, as shown in Table VIII. It can be observed
that the performance is the best when d=1, achieving the high-
est score on multiple metrics, and the performance gradually
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TABLE VII
EFFECTIVENESS OF DIFFERENT K AND M

TABLE VIII
EFFECTIVENESS OF DIFFERENT WIDTH IN THE AMPLITUDE DECOMPOSITION

TABLE IX
QUANTITATIVE COMPARISON OF OUR FGSA-NET AND 15 SOTA METHODS FOR SOD ON FOUR BENCHMARK DATASETS

decreases with the increase of d. We speculate that finer de-
composition of amplitude is beneficial for the model to better
adaptively adjust various attributes of objects, such as the ap-
proximate shape or edge details, etc.

9) Generalization performance on salient object detection
(SOD) Task: To validate the generalization of our method on
SOD task, we train our FGSA-Net on the DUTS-TR [61]
dataset, and directly evaluate on other four testing datasets,
including ECSSD [62], DUTS-TE [61], HKU-IS [63] and
DUT-OMRON [64]. We compare our method with 15 repre-
sentative methods, including BMPM [65], RAS [66], PiCA-
R [67], DGRL [68], CPD-R [69], PoolNet [70], SIBA [71],
EGNet [72], F3Net [39], ICON [73], TSNet [74], PRNeT [75],
TINet [17] and JCSOD [20], BIPGNet [76]. Table IX reports the

quantitative results on four SOD benchmark datasets. It can
be seen that our model performs favorably against the existing
methods in terms of nearly all evaluation metrics. For exam-
ple, compared with the second-best model BIPGNet on ECSSD
dataset, our model increases Sα, Eφ, and Fw

β by 1.17%, 1.98%,
and 1.50% respectively, and lowers the MAE error by 24%. This
demonstrates the strong capability and effectiveness of our net-
work to deal with other binary segmentation task.

10) Parameter comparison: In Table X, we compare the num-
ber of tunable parameters of our method and some represen-
tative SOTA methods, including SINetV2, ZoomNet, PFNet,
SINet, LSR, S-MGL, R-MGL, ERRNet, BASNet, JSCOD and
SAM-Adapter. For fair comparison, all parameter results are
either provided in the published paper or calculated based on
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TABLE X
PARAMETER COMPARISON OF OUR FGSA-NET WITH 11 REPRESENTATIVE STATE-OF-THE-ART METHODS

the implementation details in the paper and open-source model
code. These statistics highlight that our proposed FGSA-Net is
lightweight, requiring less or comparable parameters to achieve
promising performance.

V. CONCLUSION

In this paper, we propose a frequency-guided spatial adapta-
tion network for COD. Specifically, a frequency-guided spatial
attention module is devised to adapt the pretrained foundation
model from spatial domain to focus more on the camouflaged re-
gions, while guided by the frequency components dynamically
adjusted in the frequency domain. Based on the attention mod-
ule, the FBNM and FBFE module are further proposed to extract
and fuse multi-scale features which contain both the general
knowledge of the pretrained model and specialized knowledge
learned from the downstream COD dataset. Extensive exper-
iments verify that our proposed method outperforms the base-
line counterparts with large margins and achieves state-of-the-art
performances on four benchmark datasets.
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