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Abstract—Semantic segmentation of river ice image serves
as a critical technological foundation for hydrological moni-
toring and ice flood early warning system. Current publicly
available river ice datasets predominantly utilize UAV-captured
image and ground-based photographic observations. To ad-
dress the limitations of spatial coverage in existing datasets,
we present NWPU YRCC GFICE - a satellite remote sensing
dataset constructed from multi-spectral GF-2 satellite images.
The dataset innovatively categorizes river ice into six fine-
grained classes across freeze-thaw cycles and covers river ice
data from Yellow River (Ningxia-Inner Mongolia section) span-
ning the past 10 years. We further establish a comprehen-
sive deep learning benchmark, which evaluates 33 state-of-
the-art segmentation models and two improved segmentation
models based on YOLO and Segformer architecture, sepa-
rately. Experiments are conducted on the NWPU YRCC GFICE
dataset and three public river ice datasets (NWPU YRCC EX,
NWPU YRCC2, and Alberta river ice segmentation dataset). The
proposed models exhibit excellent performance, surpassing the
state-of-the-art methods. The presented NWPU YRCC GFICE
dataset and benchmark enriches the river ice dataset and
favors in promoting fine-grained river ice segmentation re-
search from satellite view. Our dataset and code is available
at https://github.com/ASGOLabMultisourceCooperationGroup/
NWPU YRCC GFICE
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I. INTRODUCTION

River ice represents a dynamic natural phenomenon with
significant impacts on both ecological systems and human
societies. In regions of the Northern Hemisphere where tem-
peratures drop below 0°C, river ice forms as water freezes
under cold weather conditions [1]. The accumulation of river
ice can provoke flooding via ice jams, hinder navigation,
and disturb local ecosystems. Due to these potential threats,
efficient monitoring of river ice is imperative for ensuring
public safety, anticipating disasters, and enhancing resource
management [2], [3]. A critical technological foundation of
river ice monitoring is river ice segmentation, which involves
classifying different elements such as ice, water, and river-
banks at the pixel-level in image data. It further aids in
distinguishing the various states of river ice. The accurate seg-
mentation is vital for a precise analysis of river ice dynamics,
thereby advancing monitoring and management practices.

Semantic segmentation has made significant progress since
the advent of Fully Convolutional Networks (FCN) [4], which
laid the foundation for modern segmentation techniques.
Building on the FCN framework, models such as DeepLab
[5]–[8], U-Net [9], U-Net++ [10], HRNet [11], and RefineNet
[12] significantly advanced the field. Transformer-based mod-
els, such as SegFormer [13] and the Segmentation Transformer
(SETR) [14], brought innovation through powerful global
context modeling. Models like BiseNet [15], PIDNet [16], and
YOLOv8 [17] have focused on balancing accuracy with pro-
cessing speed, making them suitable for real-time applications.
Additionally, large-scale models like the Segment Anything
Model (SAM) [18] and others [19], [20], [21] have enhanced
scalability and efficiency, enabling diverse applications.

With the continuous development of semantic segmentation
technology, various models have been applied to river ice
segmentation. For instance, IceHrNet [22], based on HRNet
[11], has been used for high-resolution river ice analysis, while
ICENet [23], built on the BiseNet [15] framework, targets river
ice segmentation. Singh et al. [24] applied CNN-based models
like U-Net [25], SegNet [26], DeepLab [6], and DenseNet
[27] to classify river ice into categories such as water, drift
ice, and anchor ice. UAV-based datasets, such as the Alberta
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Fig. 1: NWPU YRCC GFICE represents an extensive remote sensing dataset obtained via the GF-2 satellite and annotated by
hand. The dataset focuses on the redundant classification and segmentation of river ice. It categorizes river ice into six types:
drift ice (pink), shore ice (yellow), thermal growth ice (dark blue), consolidated ice blocks (light blue), mixture of snow with
ice or others (white) and other ice cover (red). Additionally, it includes water (green) and land (black).

River Ice Segmentation Dataset [24], have played a pivotal
role in advancing segmentation, with models like ICENet
[23], ICENetV2 [28], and FastICENet [29] demonstrating
success in segmenting ice and water features. Similarly, fixed
camera datasets [30], [31] are also widely used for river ice
monitoring.

In addition to UAV and camera-based datasets, satellite
data has been extensively employed for river ice monitoring.
For example, Temimi et al. [32] use NOAA-20 and NPP
satellites for near-real-time monitoring of ice in northern U.S.
and Canadian basins. Muhammad et al. [33] apply MODIS
data from Terra and Aqua satellites to monitor freeze-thaw
conditions on the Mackenzie River, while B. Altena et al.
[2] combine Sentinel-2 and PROBA-V data for ice move-
ment estimation along the Lena River. Additionally, [34] uses
Sentinel-1 for detecting ice jams in Finnish rivers. While
these studies focused on large-scale tasks like freeze-thaw
detection or assessing the extent of ice cover, fine-grained
classification of river ice remains essential. Different types of
river ice, including drift ice, shore ice, and flat ice, provide key
insights into the river’s freezing conditions and help predict
ice jam formation, critical for flood forecasting. The absence
of large-scale, high-quality annotated datasets for river ice
segmentation in satellite image remains a critical bottleneck
in advancing river ice monitoring research.

To explore detailed river ice classification, we select
Ningxia-Inner Mongolia section of Yellow River as our study
area, in which river ice phenomenon is very typical. Compared
with UAV-captured image and ground-based photographic
observation, satellites provide a larger view. We gather GF-
2 satellite images of the studied area spanning ten years and
covering the freeze-up to break-up period from November to
March, and construct a satellite remote sensing dataset, named
NWPU YRCC GFICE, for fine-grained river ice segmenta-
tion. It categorizes river ice into six fine-grained classes across
freeze-thaw cycle. Moreover, we develop a comprehensive
deep learning benchmark, which evaluates 35 segmentation
models based on NWPU YRCC GFICE, including two im-
proved segmentation models based on YOLO and Segformer
architecture, separately. The presented NWPU YRCC GFICE

dataset and benchmark favors in promoting fine-grained river
ice segmentation research in a large-scale view. The main
contributions are summarized as follows:

• To advance fine-grained river ice segmentation research,
we present a satellite remote sensing dataset, namely
NWPU YRCC GFICE. All images are captured by GF-
2 satellite in Ningxia-Inner Mongolia section of Yellow
River, in which river ice phenomenon is very typical.
In total, it contains 28,378 images with a size of 768 ×
768 pixels. Pixel-level annotations are performed on the
NWPU YRCC GFICE dataset, including 8 categories
covering six fine-grained types of river ice, land, and
water. To date, this dataset is the first publicly available
satellite remote sensing dataset for fine-grained river ice
classification.

• Based on NWPU YRCC GFICE, we establish a compre-
hensive deep learning benchmark for fine-grained river
ice segmentation, evaluating 33 state-of-the-art segmen-
tation models and providing two recommended solu-
tions: ICEYOLO and ICEFormer. This benchmark offers
systematic performance comparison and delivers practi-
cal recommendations for different application scenarios.
ICEYOLO is based on YOLOv8 to take advantage of
YOLO’s real-time speed and lightweight architecture,
providing an optimal solution for real-time monitoring
applications. To adapt irregular shape characteristics of
river ice, two improvements are adopted, i.e., adding
attention at different scale in encoding stage and de-
signing an adaptive keypoint redistribution algorithm in
training stage. ICEFormer is constructed on Segformer
architecture and extended by a multiscale fusion, offering
the highest accuracy solution for precision-critical appli-
cations.

• Experiments are conducted on the NWPU YRCC
GFICE dataset and three public river ice datasets

(NWPU YRCC EX, NWPU YRCC2, and Alberta river
ice segmentation dataset). The proposed models ex-
hibit excellent performance, surpassing the state-of-the-
art methods.
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II. RELATED WORK

A. Semantic Segmentation

Since the advent of fully convolutional networks (FCNs) [4],
which eliminates the need for traditional patch-based methods
and facilitates the application of deep learning techniques to
segmentation task, the field of semantic segmentation has
made great progress and promotion. Following the FCN,
several excellent models emerge. The DeepLab series [5]–
[7] introduce atrous (dilated) convolution, which expands the
receptive field without losing resolution, improving feature
extraction from larger contextual regions. U-Net [9] and
its evolution U-Net++ [10] advance segmentation by using
skip connections and nested skip pathways, which enhance
feature propagation and segmentation precision, especially
in biomedical and high-resolution imaging. RefineNet [12]
focuses on refining coarse predictions through networks de-
signed for multi-path refinement, enhancing the extraction
of fine-grained features. HRNet [11] distinguishes itself by
maintaining high-resolution representations throughout the en-
tire network, thereby setting a high standard for preserving
spatial information across various segmentation applications.
Collectively, these models, with their innovative architectures,
have driven the field forward by enhancing feature extraction,
contextual understanding, and precise prediction, paving the
way for more sophisticated semantic segmentation methods.

With the emergence of Transformer and its outstanding
performance in various fields, recent innovations in semantic
segmentation have led to the development of Transformer-
based models that emphasize modeling global context. Initially
designed for image classification, the Vision Transformer
(ViT) [35] has been successfully adapted for segmentation
by utilizing a self-attention mechanism to capture broad de-
pendencies. This method improves segmentation accuracy by
thoroughly understanding the global context. Building on this,
the Segmentation Transformer (SETR) [14] refines the trans-
former framework specifically for pixel-level segmentation by
replacing typical convolutions with full self-attention, achiev-
ing impressive results on complex datasets. More recently, the
Swin Transformer [36] has been acknowledged for its use of
a shifted window approach in self-attention. This technique
effectively balances the extraction of both local and global
features while reducing computational demands. In addition,
SegFormer [13] introduces an efficient hierarchical trans-
former structure that boosts scalability and accuracy, advanc-
ing the role of transformers in semantic segmentation. Further,
MMT (Mixed-Mask Transformer) [37] introduces a mixed-
mask attention mechanism and progressive multiscale learn-
ing strategy to address the foreground–background imbalance
problem in high-resolution remote sensing scenes, achieving
state-of-the-art performance on standard benchmarks such as
ISPRS Potsdam and Vaihingen.

Simultaneously, there has been an increasing emphasis on
balancing segmentation accuracy and computational efficiency,
which is especially important for real-time applications re-
quiring fast processing. Models such as BiseNet [15], PIDNet
[16], and YOLOv8 [17] employ lightweight architectures to
decrease processing time with negligible losses in accuracy,

rendering them ideal for real-time use in resource-constrained
environments. In addition, Cross Fusion Net (CF-Net) [38] is
a lightweight segmentation network that efficiently captures
small-scale semantic details through attention-based fusion.
These models achieve remarkable segmentation through tech-
niques such as enhanced feature extraction via parallel con-
volutional pathways and the integration of effective attention
mechanisms. Furthermore, larger models like the Segment
Anything Model (SAM) [18], along with associated frame-
works [19], [20], [21], have been designed to prioritize scala-
bility, robustness, and efficiency. [39] proposes a postprocess-
ing framework that directly integrates SAM’s raw outputs with
the predictions of semantic segmentation models, effectively
enhancing mask quality without requiring additional training.
These models adeptly handle a wide range of segmentation
tasks, from fine-grained pixel-level delineation to comprehen-
sive image processing, delivering excellent outcomes across
numerous applications. Their ability to scale and adapt to
various environments has become a crucial advancement in
semantic segmentation, enabling high-quality segmentation on
a larger scale with faster processing speeds.

B. River Ice Segmentation

With the development of remote sensing technologies, satel-
lites, UAVs, and fixed cameras have been adopted to monitor
the formation and development of river ice from different
views.

Before deep learning, river ice segmentation relies on
manual feature extraction, rule-based methods, and traditional
machine learning techniques. SAR image is commonly used,
with techniques such as k-means clustering and grouping
pixels based on grayscale or texture characteristics, but this
method struggles with unbalanced data distributions [40]. To
detect river ice breakup dates, Beaton et al. [41] propose a
calibrated threshold method to distinguish open water and not
open water (solid ice, cloud or a combination of the two)
and mitigate the impact of cloud interference. Multithreshold
techniques [42] are also used for pixel classification, but are
still vulnerable to environmental noise [43]. Bharathi et al.
[44] introduce a texture-based color segmentation method for
infrared river ice images, using K-means clustering combined
with Gabor filters for texture segmentation. These methods
mainly focus on river ice extraction, while their accuracy
is limited by noise, lighting, and the complexity of manual
feature extraction.

At this stage, satellite data play a crucial role in advancing
river ice monitoring. Most approaches adopt satellite im-
ages to perform a global analysis of river ice distribution.
Data from different sources, such as VIIRS and MODIS, or
TanDEM-X and Landsat [45], [46], are applied to improve
the segmentation accuracy. MODIS data are used to follow
freeze-thaw cycles in rivers such as the Mackenzie River
[33]. These studies have largely concentrated on large-scale
monitoring activities, such as detecting freeze-thaw cycles and
gauging ice cover extents. In addition to satellite observations,
ground-based sensing techniques have also been applied to
river ice monitoring. Purnell et al. [47] employ GNSS-IR in
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combination with SAR image and machine learning to capture
river ice breakup processes with high temporal sensitivity.

The rapid development of deep learning has significantly
advanced intelligent river ice monitoring. Singh et al. [24]
introduce CNN-based segmentation models (e.g., U-Net [9],
SegNet [26]) to classify river ice into water, drift ice, and
anchor ice, achieving pixel-level accuracy. Subsequent studies
further optimize feature representation for ice segmentation:
ICENet [23] fuses positional and channel-wise attention to
enhance ice boundary delineation, while ICENetv2 [28] in-
corporates multiscale fusion to address fine-grained ice vari-
ations in UAV-captured image. FastICENet [29] introduces a
lightweight architecture with parallel convolutional pathways,
achieving real-time inference speeds while maintaining high
segmentation accuracy for dynamic ice monitoring. Ansari et
al. [48] propose IceMaskNet, an instance segmentation model
based on Mask R-CNN with a ResNetV2-50 backbone, aimed
at improving segmentation efficiency and suitability for UAV-
based river ice monitoring. Fu et al. [49] propose CSEU-Net,
a novel U-Net variant integrating a ConvNeXt-U backbone and
SE attention modules, specifically designed for segmenting
river ice floes in UAV-based grayscale image. Zhao et al.
[50] develop a transfer learning-based framework integrating
channel-spatial attention mechanisms and pyramid pooling to
address fine-grained river ice segmentation in high-latitude
urban environments. The above algorithms utilize UAV images
to segment river ice. Promoted by the fast development of UAV
technologies, UAVs with these excellent algorithms provide
a fast, convenient, wide-range, and high-resolution way to
monitor river ice.

In parallel with UAV-based efforts, fixed ground-based
cameras have also been adopted for long-term river ice mon-
itoring using deep learning techniques. Ansari et al. [51]
apply a Mask R-CNN-based instance segmentation algorithm
to oblique shore-based image captured along the Dauphin
River, enabling effective segmentation and classification of
river ice types from camera-collected images. RIce-Net [52] is
presented to segment images from the U.S. Geological Survey
fixed river camera network to calculate the fraction of ice
coverage, to automatically generate ice flags. It contains a two-
stage process: introducing a binary classifier based on FCN
with Softmax activation function before the segmentation step
to filter out ice-free images and then inputting the features
of the ice-affected images into a pyramid attention network
(PAN) to segment the ice on the water surface. Pei et al. [30]
propose a hybrid pipeline for the North Saskatchewan River
ice analysis, including classification, geometric rectification,
and segmentation, in which a simple CNN architecture is
adopted to classify the image into four classes and a UNet
architecture is utilized to segment river ice. These works
demonstrate the feasibility and robustness of applying deep
learning to fixed-camera image, particularly for long-term and
oblique-view monitoring of river ice.

Satellite image has also been increasingly integrated with
deep learning methods. Temimi et al. [32] apply the U-Net
architecture to classify NOAA-20 and NPP satellite images
into seven types, including water, land, vegetation, snow, river
ice, cloud, and cloud shadow. Altena et al. [2] use Sentinel-2

and PROBA-V to estimate ice block motion, while Sentinel-
1 is utilized for detecting ice jams under cloudy conditions
[34]. These methods focus on large-scale dynamic monitoring
but lack the granularity required for fine-level classification of
specific ice types.

Although significant progress has been made in river ice
monitoring, fine-grained river ice segmentation across freeze-
thaw cycles remains a critical challenge. This task is espe-
cially important for accurately monitoring ice dynamics and
forecasting ice jams.

III. NWPU YRCC GFICE DATASET

A. Motivation

High quality river ice datasets play an indispensable role in
river ice monitoring based on deep learning. As shown in Table
I, the existing public river ice datasets can be folded into three
groups according to the data collection platform, namely UAV-
based datasets, satellite-based datasets and ground-camera-
based datasets.

Several UAV-based datasets have been developed to ad-
vance the intelligent monitoring of river ice. NWPU YRCC
dataset [23], collected from UAV image over the Ningxia-
Inner Mongolia reach of China’s Yellow River, includes 814
images annotated into three categories (ice, water, and shore)
with a resolution of 1600×640 pixels. NWPU YRCC EX
dataset [29], an extension of the previous dataset, consists
of 887 images, also from the Yellow River, and covers three
categories. Similarly, NWPU YRCC2 dataset [29] expands
to 1,525 images with four categories (drift ice, shore ice,
water, and shore), addressing finer-grained classification needs
for ice management. Singh et al. [24] propose a comprehen-
sive benchmark on surface ice classification, leveraging high-
resolution images and videos captured by UAVs and bridge-
mounted cameras over Alberta rivers. SHR RIDS dataset [50],
comprising 1,161 UAV images captured from the middle
reaches of the Songhua River near Harbin, China, focuses on
high-latitude urban river ice with three pixel-level classes: ice
cover, drift ice, and water. While the dataset collected from the
Dauphin River, presented by Ansari et al. [51], includes 115
images and six categories (frazil pan, broken ice, frazil slush,
border ice, ice cover, and open water). The dataset presented
by Fu et al. [49] focuses on the Yellow River’s Binzhou
section. It comprises 65 original UAV images augmented
to 27,180 training samples through Gaussian noise, blurring,
and rotation, targeting binary segmentation (ice vs. water). In
addition, the dataset introduced [53] by comprises 1,101 UAV-
captured images from the Songhua River in Northeast China,
covering ice channels formed by air-cushion icebreakers. This
dataset provides pixel-level annotations for three categories:
ice sheet, ice channel, and background. These datasets, based
on UAV-captured image, are invaluable for understanding river
ice behavior.

In addition to UAV-based datasets, several ground fixed-
camera-based datasets have been introduced. The IPC RI IDS
dataset [31], comprising 15,600 fixed-camera images captured
from the Nenjiang River in China, provides continuous mon-
itoring of ice dynamics across five distinct freeze-thaw stages
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TABLE I: A collection of river ice segmentation datasets categorized by collection platform.

# Dataset Collection Platform Volume Classes Location Resolution

1 NWPU YRCC [23] UAV 814 3 Yellow River, China 1,600 × 640
2 NWPU YRCC EX [29] UAV 887 3 Yellow River, China 1,600 × 640
3 NWPU YRCC2 [29] UAV 1,525 4 Yellow River, China 1,600 × 640
4 Alberta River Ice [24] UAV+Ground 255 3 Rivers across Alberta, Canada 1,134 × 1,009 ∼ 1,462 × 1,463
5 SHR RIDS [50] UAV 1,161 3 Songhuajiang River, China 3,840 × 2,160
6 Ansari et al. [48] UAV 115 6 Dauphin River, Canada 1,280 × 720 ∼ 5,472 × 3,648
7 Fu et al. [49] UAV 65 2 Yellow River, China 1,920 × 1,080
8 Zhao et al. [53] UAV 1,101 3 Songhuajiang River, China 3,840 × 2,160
9 Ansari et al. [51] Ground 1,795 5 Dauphin River, Canada –

10 IPC RI IDS [31] Ground 15,600 5 Nenjiang River, China 1,280 × 720
11 Pei et al. [30] Ground 1,893 4 N. Saskatchewan River, Canada 820 × 500
12 NIMS [52] Ground 1,829 3 Milwaukee River, U.S. 1,600 × 640 ∼ 1,281 × 1,081
13 NWPU YRCC GFICE Satellite 28,378 8 Yellow River, China 768 × 768

(ice frozen, break-up initiation, drifting, break-up completion,
and ice-free), with pixel-level annotations for ice, water, and
background categories. Furthermore, the dataset presented by
Ansari et al. [48] includes 1,795 oblique shore-based images
captured from the Dauphin River in Canada, annotated into
five categories: open water, border ice, ice cover, frazil slush,
and frazil pan/surface collar ice. The dataset introduced by Pei
et al. [30] consists of long-term time-lapse images captured
by a public rooftop camera with a distant, oblique view of
the North Saskatchewan River in Canada. It contains 1,893
images and spans multiple freeze-up and breakup periods
across several years, with manual annotations of ice pans
and full ice cover used for segmentation and shape analysis.
The NIMS images dataset [52], captured using ground-based
cameras along the Milwaukee River in Wisconsin, U.S., is
annotated for river ice segmentation into three categories:
water, ice, and other. While the ground mounted fixed-camera
approach allows for continuous monitoring, it has limitations
in terms of spatial coverage.

Satellite image addresses the limitations of UAVs and
stationary cameras by providing extensive spatial coverage,
enabling the observation of expansive river ice dynamics.
Upon examining existing datasets for semantic segmentation
in river ice monitoring, despite there are many UAV and
ground camera-based datasets, no publicly satellite remote
sensing image dataset for river ice classification and fine-
grained semantic segmentation is available. To advance deep
learning research in this area, we have created a multi-
spectral satellite image dataset specifically for river ice fine-
grained segmentation. This dataset is a collaborative effort be-
tween Northwestern Polytechnical University and the Yellow
River Conservancy Commission Information Center, and it is
designated as the NWPU YRCC GFICE River Ice Dataset.
Here, “NWPU YRCC” signifies Northwestern Polytechni-
cal University/Yellow River Conservancy Commission, while
“GFICE” denotes river ice images captured by the GF-2
satellite. It comprises 28,378 satellite images from the Yellow
River in China, spanning multiple freeze-thaw cycles. Totally,
it covers eight categories and classifies river ice into six
distinct types with fine pixel-level manual annotation.

Our motivation of NWPU YRCC GFICE River Ice Dataset
is to advance satellite-based river ice segmentation and make
more accurate, fine-grained and large-scale monitoring of river
ice dynamics enabled.

B. Dataset Constructions

Data collection. To automatically monitor river ice dynam-
ics throughout the ice season in a large-scale view, we collect
37 GF-2 satellite multi-spectral images from 2015 to 2024,
covering the months from November to March, including
periods of ice formation, growth, and breakup. These images
are acquired from the Ningxia-Inner Mongolia section of the
Yellow River. The longitude of the covered area is 106.3-
111.5, and the latitude is 38.3-40.9. As shown in Figure 1,
it covers the entire “U”-shaped part of the river. We choose
this area because the ice phenomenon in this area is the most
typical in the Yellow River Basin. The GF-2 satellite data
consists of two parts: a four spectral (red, green, blue, and near
infrared) multi-spectral image with a resolution of 4 meters
and a panchromatic image with a resolution of 0.8 meters.
The size of these images ranges from 46,320 × 33,169 pixels
to 39,392 × 30,008 pixels.

Data preprocessing. Some preprocessing procedures are
required to perform on original satellite images, includ-
ing panchromatic image orthorectification, multi-spectral and
panchromatic image matching, multi-spectral image orthorec-
tification, and pan-sharpening of orthorectified panchromatic
and multi-spectral image. After preprocessing, we obtain or-
thorectified multi-spectral images with a resolution of 0.8
meters, which are as the input to manual annotation.

Manual annotation. There are several tools for semantic
segmentation annotations, such as Image Labeler and La-
belme, which are typically designed to annotate objects with
simple shapes, like vehicles. Practical annotation experience
revealed challenges with these tools when dealing with satellite
images of river ice, which exhibit substantial variability in size
and form. Therefore, we adapt ENVI Classic 5.3 software
to produce three-channel pseudo-RGB images. Then, these
images are finely annotated in Photoshop, distinguishing eight
categories: shore ice, drift ice, consolidated ice blocks, thermal
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Fig. 2: Visualization of River Ice Segmentation across Various Ice Types. This figure presents a set of images from the
NWPU YRCC GFICE dataset, showcasing the segmentation of different river ice categories. Each pair consists of the original
image on the left and its corresponding segmentation mask on the right. The categories include Drift Ice, Bank Ice, Consolidated
Ice Blocks, Thermal Growth Ice, Other Ice Cover, Mixture of Snow with Ice or Others, Water, and Other. The segmentation
process is highlighted by distinct color coding for each ice type, providing a clear illustration of the dataset’s detailed
classification.

growth ice, mixture of snow with ice or others, water, other
ice cover, and land. This process is highly labor-intensive, and
ultimately complete the complete annotation of 37 images.

Dataset description. Since the size of each satellite image
is approximately 40,000 × 30,000 pixels, it is hard to input the
whole satellite image into a semantic segmentation neural net-
work. Therefore, these satellite images are cropped to patches
with a size of 768 × 768 pixels, resulting in a collection of
28,378 images.

In our dataset, the river ice images are segmented into

three broad categories, i.e., open water, river ice, and land.
Moreover, according to the characteristics and development of
river ice, the river ice is further classified into six fine-grained
categories. Figure 2 shows some typical samples. The detailed
description of each category is as follows.

1) Open water: It refers to areas in the image that are not
frozen, representing the water surface or flowing water bodies.
Open water exhibits a smoother texture compared to ice.

2) Shore ice: It is characterized by a smooth uniform
surface, forms along river banks and channel bars. It is also
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named as boarder ice or border ice in some literature. As
shown in the first two rows of Figure 2, shore ices are marked
by yellow. The shore ice along bank is usually in the shape
of a strip, while the shore ice along channel bar is usually in
the shape of a collar.

3) Drift ice: It refers to scattered ice floes that form during
the floating ice period as a result of temperature drops. These
ices float on the water surface and drift with the current. Drift
ice may undergo different status, such as frazil slush, frazil
ice pan and crusty pan along with temperature change. With
drifting on the water surface, they will join/collide with other
ice, small ice pans may join together to form big ice pan/strip.
As shown in the first two rows of Figure 2, this kind of ice
(marked by pink) has diverse shapes and sizes. The size ranges
from several pixels to thousands of pixels.

4) Thermal growth ice: Typically, this type of ice forms in
environments where water bodies are still or where the current
is exceedingly slow. As the water temperature drops below the
freezing point, the surface begins to freeze, resulting in the
formation of a flat and continuous ice layer.

5) Consolidated ice blocks: This kind of ice forms in envi-
ronments with rapid water flow, particularly in the fast currents
or narrow sections of rivers. For example, drift ice blocks
floe with the current. As the temperature decreases, with the
amount of drift ice increases, they accumulate together so that
the drift ice density continuously increases. When they reach
the narrow river channel, they are stuck in the river channel
and no longer drift, meanwhile if water cools quickly, they
will freeze up and never drift to form a continuous large sheet
of ice, i.e. consolidated ice block. The morphology of this ice
is more chaotic, and it sometimes appears as though the ice
blocks have been randomly stacked together.

6) Mixture of snow with ice or others: It refers to the
mixture forms when snow and ice layers or others in the river
channel combine after a snowfall. It exhibits higher brightness
and reflectivity.

7) Other ice cover: It refers to ice that forms on land,
typically near wetlands or adjacent areas to the river, but not
directly connected to river channel. This type of ice may be
formed by the freezing of water overflowing from the rising
water level in the river channel.

8) Land: It refers to the other ground areas outside the river
channel and not covered by ice.

C. Dataset Characteristics

To our best knowledge, the presented NWPU YRCC
GFICE dataset is the first satellite image dataset for fine-

grained river ice semantic segmentation. All images are cap-
tured by GF-2 satellite in Ningxia-Inner Mongolia section of
Yellow River, in which river ice phenomenon is very typical. In
total, it contains 28,378 images with a size of 768 × 768 pixels.
Compared with the existing river ice datasets with semantic
labels, it is currently the largest one. To fine explore the river
ice start, development and evolution from satellite view, we
carefully classify the river ice into six fine-grained subclasses
at pixel-level. Only the dataset collected from the Dauphin
River, presented by Ansari et al. [51], can be on a par with our

dataset in terms of the diversity of river ice types. Meanwhile,
our dataset spans river ice conditions of the Yellow River
(2015–2024) during freeze–thaw seasons, with image acqui-
sitions concentrated between November and March, and the
comparable dataset only contains 115 labeled images collected
from November to March of three consecutive years (2017
to 2020). Therefore, our dataset has significant advantages in
terms of data diversity. In conclusion, NWPU YRCC GFICE
dataset enriches the river ice dataset, enabling fine-grained
large-scale monitoring of river ice from satellite view.

IV. METHOD

To establish a comprehensive benchmark for fine-grained
river ice segmentation, we propose two baseline models:
ICEYOLO and ICEFormer. ICEYOLO is a CNN-based model
built upon the YOLOv8 architecture, designed for real-time
instance segmentation of river ice. In contrast, ICEFormer is
a Transformer-based semantic segmentation model, featuring
a hierarchical encoder-decoder structure to capture rich spatial
and spectral information. In the following sections, we detail
the architectural designs and key components of both models.

A. ICEYOLO

Since river ice monitoring tasks often require both high seg-
mentation accuracy and real-time inference speed, ICEYOLO
leverages the YOLOv8 framework and two improvements to
balance precision and efficiency.

Although YOLOv8 performs well on many panoramic in-
stance segmentation tasks with competitive inference speed
advantage, the direct use is not suitable for river ice semantic
segmentation. This is mainly attributed to two aspects: 1)
The irregular shapes and fragmented boundaries commonly
observed in river ice formations make standard instance label
conversion prone to geometric distortion. As shown in the
third column of Figure 4, the instance boundary generated
by original YOLOv8 marked by red rectangle is incomplete
or inaccurate, especially for instances on the image edge and
small instances; 2) River ice often exhibits subtle textural
variations across different ice types, such as shore ice, drift
ice, and consolidated ice blocks.

To address the challenges posed by river ice segmentation,
two targeted improvements are introduced: 1) Adaptive Key-
point Redistribution Algorithm is proposed, ensuring more
uniform and accurate boundary point distribution during in-
stance generation. 2) Channel Attention Mechanism (CAM)
[54] is incorporate into the neck part of YOLOv8 architecture,
allowing the network to dynamically prioritize informative
feature channels and improve segmentation accuracy under
complex environmental conditions. The details of the entire
model architecture and two improvements are introduced one
by one as follows.

Model Architecture. Similar with YOLOv8, the ICEY-
OLO model follows a four-stage architecture: preprocessing,
backbone, neck, and segmentation head, as shown in Figure
3(a). In the preprocessing stage, semantic segmentation masks
are transformed into YOLO-compatible instance segmentation
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(a) ICEYOLO.

(b) ICEFormer.

Fig. 3: The architectures of the proposed river ice segmentation models: (a) ICEYOLO, an enhanced YOLO-based river ice
segmentation framework; (b) ICEFormer, a Transformer-based river ice segmentation network.

labels. This involves the use of the Teh-Chin chain approx-
imation algorithm to extract boundary points, followed by
the Adaptive Keypoint Redistribution algorithm (AKR) to
optimize keypoint distribution, preserving boundary integrity
and minimizing information loss. The backbone adopts the
YOLOv8 feature pyramid design, which incorporates C2f
modules and depthwise separable convolutions to efficiently
extract multiscale hierarchical features from the input images.
Feature maps are then aggregated in the neck module, where
the Channel Attention Mechanism (CAM) is inserted before
each C2f block in the multiscale feature aggregation path of
the neck to selectively enhance critical feature representations.
Finally, the segmentation head predicts instance masks, bound-
ing boxes, and confidence scores for detected river ice objects.

The Adaptive Keypoint Redistribution Algorithm. Dur-
ing the transformation from semantic masks to instance labels,
the uneven distribution of boundary points can severely distort
the geometry of complex river ice structures, thereby impairing
segmentation performance. This unevenness often arises when
long or intricately shaped river ice objects produce mask
contours where some segments are sparsely sampled while
others are overly dense, leading to jagged or biased polygo-
nal approximations. The original transformation algorithm in

YOLOv8 faces this issue when coping with river ice, as new
keypoints are added without considering the overall shape and
distribution of the boundaries.

To overcome this, the Adaptive Keypoint Redistribution
Algorithm is designed to iteratively balance the distribution
of keypoints along object boundaries. The algorithm first
decomposes the boundary into segments and inserts them into
a max-heap sorted by length. The longest segment is selected
at each iteration for keypoint insertion, progressively achieving
a uniform point distribution. This procedure continues until the
target number of keypoints is reached. Finally, keypoints are
collected and sorted to reconstruct a smooth and consistent
boundary contour. Multi-threaded processing is adopted to
accelerate computation. The procedural details are outlined in
Algorithm 1.

Channel Attention Mechanism. The intricate textures and
subtle inter-class variations characteristic of river ice present
challenges for traditional convolutional feature extraction. To
address this, a Channel Attention Mechanism (CAM) [54] is
embedded into the neck module of ICEYOLO. Specifically,
CAM modules are inserted before each C2f block in the multi-
scale feature aggregation path of the neck, enhancing channel-
wise feature representations at three different scales. By
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Fig. 4: Adaptive Keypoint Redistribution Algorithm. The original algorithm for adding keypoints in YOLOv8 often results
in significant loss of important regions, as new keypoints are added without considering the overall shape and distribution of
the boundaries. This can lead to poor representation of the river ice contours. In contrast, the proposed Adaptive Keypoint
Redistribution Algorithm ensures a more balanced and accurate distribution of keypoints along the boundary, preserving the
integrity of the original shape and minimizing the loss of crucial details.

dynamically adjusting feature weights, CAM assigns higher
attention scores to informative channels while suppressing
redundant responses. This improves the model’s sensitivity to
ice-related patterns such as thin drift ice and fragmented shore
ice, ultimately boosting segmentation accuracy in complex
river scenes. The structure of CAM is depicted by the right
part of Figure 3(a).

B. ICEFormer

ICEFormer is a Segformer-based semantic segmentation
benchmark designed for high-precision classification of river
ice. Compared to CNN-based models, Transformer architec-
ture offers stronger global context modeling, making them
particularly suitable for capturing the complex spatial distribu-
tions of different river ice types over large areas. Considering
the multiscale characteristics of river ice, i.e. the difference

in size of diverse river ice instances is huge, we improve
the original Segformer by a well designed multiscale feature
fusion module. The details of the ICEFormer architecture and
feature fusion module are introduced as follows.

Model Architecture. ICEFormer adopts a hierarchical
encoder-decoder architecture, the same as Segformer. The
encoder directly processes the input remote sensing image
through multiple Transformer stages, progressively downsam-
pling the feature maps to 1/4, 1/8, and 1/16 resolution of
the original input image. Each Transformer block integrates
a multi-head self-attention mechanism to capture long-range
dependencies and a Mix Feed-Forward Network (Mix FFN)
to enhance local feature extraction via depthwise separable
convolutions. This design enables ICEFormer to simultane-
ously model fine-grained ice features and large-scale spatial
structures, addressing the characteristics of river ice scenes.
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Algorithm 1 Polygon Boundary Keypoint Alignment

Require: segments (original boundary points of the polygon), n (target number of keypoints)
Ensure: points (aligned boundary keypoints)

1: Initialize a max-heap heap
2: total point count = len(segments) - 1
3: # Initialize the heap
4: for each pair of consecutive points in segments do
5: length = distance between (point1.x, point1.y) and (point2.x, point2.y)
6: line = create segment object:
7: line.index = current segment index
8: line.point1 = (point1.x, point1.y)
9: line.point2 = (point2.x, point2.y)

10: line.point count = 1
11: line.length = length
12: push line into heap
13: end for
14: # Add points
15: while total point count < n do
16: line = extract max-length segment from heap
17: line.point count+ = 1
18: update line and push back into heap
19: total point count+ = 1
20: end while
21: # Sort segments by original index
22: sorted lines = sort segments in heap by original index
23: Initialize points array
24: # Collect points
25: for each line in sorted lines do
26: add line.point1 to points
27: for i from 0 to line.point count - 1 do
28: time = i/(line.point count − 1)
29: new x = line.point1.x + time × (line.point2.x − line.point1.x)
30: new y = line.point1.y + time × (line.point2.y − line.point1.y)
31: add (new x, new y) to points
32: end for
33: end for
34: # Handle the last remaining point
35: add the last point of the original segments to points
36: return points

The decoder aggregates multiscale features by the designed
feature fusion module and progressively reconstruct high-
resolution segmentation maps. Finally, a MLP (Multilayer
Perceptron) layer is utilized to refine the fused features,
generating the output segmentation map with improved spatial
consistency and class discrimination.

Feature Fusion Layer. To fully exploit multiscale semantic
information, a dedicated feature fusion layer is introduced
before final prediction. As illustrated in the right part of
Figure 3(b), there are totally four groups of feature map
with different scales, produced by our encoder. For each scale,
features from other scales are through a resolution-aligned
process: those from coarser scales are downsampled using 3×3
convolutions, and those from finer scales are upsampled; then,
these resized feature maps are aggregated with themselves by
a concatenation operation. To minimize interpolation artifacts

and preserve fine boundary details, data-dependent upsam-
pling (DUpsampling) [55] is employed for upsampling during
resolution restoration. Subsequently, the channel dimensions
across all aggregated feature of different scales are unified via
MLPs, followed by concatenation along the channel axis to
produce the fused features.

V. EXPERIMENTS

A. Dataset

In addition to NWPU YRCC GFICE, we conduct exper-
iments on three publicly available river ice segmentation
datasets, i.e., NWPU YRCC EX, NWPU YRCC2 and Al-
berta River Ice Segmentation Dataset, to assess the generaliza-
tion capability of our models. For fair comparison, ICEYOLO
and ICEFormer are trained and evaluated individually on each
dataset. NWPU YRCC EX contains 887 pixel-wise annotated
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TABLE II: Benchmark on NWPU YRCC GFICE dataset. CNN-based models and Transformer-based models are separated
for comparison.

Method
IoU(%)

mIoU(%) FPS
Thermal

Growth Ice
Consolidated
Ice Blocks

Shore
Ice

Drift
Ice

Mixture of snow
with ice or others

Water
Other

Ice Cover
Land

CNN-based Models
FCN [4] 55.00 57.42 58.83 57.42 70.11 81.96 93.28 33.26 65.60 25.92
UNet [9] 64.12 65.56 49.18 61.09 58.15 78.29 65.30 89.96 66.45 22.39

DeepLabV3 [7] 75.03 67.29 62.17 56.75 65.61 82.34 76.70 94.95 72.61 20.52
PSPNet [56] 68.63 55.50 46.88 55.22 25.41 78.77 70.01 91.57 61.50 27.02
SegNet [26] 39.66 31.19 1.00 12.89 11.27 59.66 43.08 85.16 35.49 20.98
ERFNet [57] 29.32 44.12 69.59 44.12 67.50 79.75 91.93 14.20 55.31 92.58

RefineNet [12] 43.18 41.94 16.37 28.10 18.93 68.24 55.20 88.23 58.75 18.10
UNet++ [10] 57.02 49.94 2.98 19.25 15.53 72.88 60.21 88.53 45.79 19.81

DeepLabV3+ [8] 72.73 67.20 54.35 58.71 44.33 83.84 76.89 94.71 69.09 24.22
PSANet [58] 62.66 46.62 46.73 54.43 15.55 80.11 68.56 89.77 58.05 19.95

DenseASPP [59] 74.80 64.80 56.21 54.80 40.01 83.53 76.74 94.24 68.14 55.00
BiseNet [15] 56.89 60.08 72.31 60.08 78.81 86.30 94.67 55.43 72.95 148.62
ENCNet [60] 51.73 64.48 57.62 51.89 72.91 82.24 93.99 19.40 66.38 27.31
HRNet [61] 53.53 56.11 77.35 56.11 72.53 86.31 93.60 30.42 66.63 22.27
CCNet [62] 76.68 64.55 64.97 62.94 40.07 85.59 78.46 93.23 70.81 24.09

SemFPN [63] 67.41 39.99 45.36 59.51 64.12 78.52 72.73 94.59 65.28 70.39
APCNet [64] 81.06 65.13 69.26 73.21 50.42 86.12 81.75 94.75 75.21 23.11

ANN [65] 85.54 66.33 79.11 83.57 74.63 87.67 84.68 95.99 82.19 25.80
DANet [66] 84.30 65.70 76.12 79.64 55.99 88.23 83.78 95.39 78.64 21.70

OCRNet [67] 77.78 68.69 66.47 60.73 60.86 84.74 78.77 94.92 74.12 30.66
DDRNet [68] 59.33 42.79 40.01 46.51 37.36 65.59 66.46 91.19 56.15 109.61

KNet [69] 75.11 61.29 65.36 64.82 44.48 86.64 79.46 94.52 71.46 24.89
BiseNetV2 [70] 51.86 32.74 19.30 16.81 16.75 36.14 49.93 82.90 38.30 129.39

STDC [71] 73.40 63.27 58.74 49.45 49.27 77.57 68.49 92.91 66.64 122.47
SegNext [72] 84.43 64.89 75.46 83.50 80.49 87.28 83.21 96.03 81.91 63.79
PIDNet [16] 66.70 56.70 53.59 58.25 53.31 70.11 60.20 84.90 62.97 88.08

ICEYOLO (Ours) 83.66 82.45 76.85 69.19 78.52 86.70 85.88 96.65 82.48 39.21

Transformer-based Models
ViT [73] 79.95 56.78 72.93 76.51 77.17 85.95 79.65 95.54 78.06 8.94

SETR [14] 53.64 41.29 30.64 28.89 49.89 62.71 61.76 91.49 52.54 5.87
DPT [74] 74.41 71.71 51.31 50.05 64.99 83.35 77.28 95.32 71.05 12.23

Segmenter [75] 61.49 49.63 27.20 19.02 52.47 65.85 65.98 93.38 54.38 14.89
SegFormer [13] 84.22 84.64 78.19 71.96 80.75 89.02 82.71 96.10 83.45 16.71

Swin [36] 77.19 70.83 80.28 70.83 83.89 88.74 95.88 79.25 82.31 20.20
TWINS [76] 71.89 66.52 77.78 66.52 80.97 88.40 95.81 75.17 79.68 38.24

ICEFormer (Ours) 84.23 85.69 78.21 72.34 82.04 89.30 82.72 96.10 83.83 15.57

UAV images, splitting into 524 training images, 180 validation
images, and 183 test images. The NWPU YRCC2 dataset
comprises 1,525 annotated images and follows a 3:1:1 split,
resulting in 915 images for training, 305 for validation, and
305 for testing. The Alberta River Ice Segmentation Dataset is
generated by cropping and augmenting 50 manually annotated
UAV and camera-captured images, resulting in 554 training
images and 138 testing images.

B. Evaluation Criteria

In our experiments, we adopt two key metrics: mean Inter-
section over Union (mIoU) to assess segmentation accuracy,
and Frames Per Second (FPS) to reflect inference efficiency.
These two metrics together provide a comprehensive evalu-

ation of each model’s balance between precision and speed,
which is particularly important for real-time monitoring and
large-scale satellite image analysis.

C. Experimental Settings

To ensure a fair and rigorous comparison, all models in
our benchmark are trained individually with hyperparameter
tuning tailored to each architecture. Segmentation heads are
adapted to match the number of target classes in each dataset.
All input images are resized to a resolution of 768×768
pixels. Segmentation heads are modified as necessary to ac-
commodate the class numbers specific to each dataset. All
hyperparameters have been systematically optimized through
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validation experiments to achieve optimal performance for
each model architecture.

ICEYOLO Training Settings. ICEYOLO is optimized
using the Adam optimizer with an initial learning rate of 0.01.
The learning rate follows a linear decay schedule over 500
training epochs. A batch size of 40 is used during training.
Random image flipping is applied for data augmentation. The
Adaptive Keypoint Redistribution Algorithm is applied to each
polygon instance, with the target number of keypoints set to
1,000, which was experimentally determined to be optimal.

ICEFormer Training Settings. ICEFormer is trained using
the AdamW optimizer, with an initial learning rate of 6e-5
and a weight decay of 0.01. A polynomial learning rate decay
policy is adopted. Training is conducted for 85 epochs, with a
batch size of 12. Data augmentation includes random scaling
within the range [0.5, 2.0] and random horizontal flipping.

Hardware Environment. All experiments are implemented
using PyTorch and conducted on four NVIDIA GeForce RTX
4090 GPUs. Inference speed (Frames Per Second, FPS) is
measured separately on a single NVIDIA RTX 3090 GPU for
consistency across all models.

Loss Functions. ICEYOLO adopts the original segmenta-
tion loss function of YOLO, and ICEFormer inherits the pixel-
wise cross-entropy loss from SegFormer.

D. Benchmark on NWPU YRCC GFICE Dataset
Table II presents the benchmarking results of 33 existing

models and the two proposed models, ICEYOLO and ICE-
Former, on the NWPU YRCC GFICE dataset. Models are
categorized into CNN-based and Transformer-based groups for
a more structured comparison.

Among CNN-based methods, DeepLabV3+, OCRNet, and
SegNext achieve relatively high mIoU scores, demonstrating
strong segmentation capabilities. ICEYOLO, based on the
YOLOv8 architecture and improved with adaptive keypoint
redistribution and multiscale attention mechanisms, achieves a
superior mIoU of 82.48% while maintaining a high inference
speed of 39.21 FPS. This balance of accuracy and efficiency
highlights the advantages of ICEYOLO for practical, river
ice monitoring applications. Conversely, SegNet exhibits the
poorest performance among CNN-based methods with only
35.49% mIoU. SegNet’s poor performance is attributed to
its reliance on max-pooling indices transmission and Max-
Unpool2d operations, leading to significant spatial detail loss
and limited boundary reconstruction capability for the complex
spectral and geometric patterns in satellite-based river ice
imagery.

For Transformer-based methods, SegFormer, Swin Trans-
former, and ViT exhibit competitive segmentation perfor-
mance, leveraging their strong global context modeling capa-
bilities. Notably, the proposed ICEFormer achieves an mIoU
of 83.83%, outperforming SegFormer and other Transformer
baselines. ICEFormer also maintains reasonable inference
efficiency with 15.57 FPS, validating the effectiveness of
the multiscale feature fusion and hierarchical enhancements
tailored for fine-grained river ice segmentation. In contrast,
SETR exhibits the poorest performance among Transformer-
based methods with only 52.54% mIoU. SETR’s suboptimal

performance stems from the absence of multi-scale feature
fusion mechanisms and large patch usage, which results in
fine-grained detail loss and blurred boundaries.

In summary, ICEFormer achieves superior segmentation
accuracy, outperforming all baseline methods, whereas ICEY-
OLO maintains a favorable balance between segmentation ac-
curacy and real-time inference efficiency. The results demon-
strate that the architectural adaptations and preprocessing
strategies introduced in this study effectively address the
challenges posed by temporal variability and morphological
complexity in satellite-based river ice segmentation.

E. Comparison Experiments

To assess model generalization, we further evalu-
ate ICEYOLO and ICEFormer on three public datasets:
NWPU YRCC EX, NWPU YRCC2, and Alberta. As shown
in Table III, both models outperform all other 14 segmentation
models across all datasets.

ICEYOLO achieves the top MIoU score on NWPU YRCC2
(92.34%), while ICEFormer leads on NWPU YRCC EX with
the MIoU score 92.98% and on Alberta River Ice Segmen-
tation dataset with the MIoU score 96.82%. These results
demonstrate that our models perform well on other river ice
datasets.

F. Ablation Studies

To validate the effectiveness of individual components in our
proposed models, we conduct comprehensive ablation studies
on the NWPU YRCC GFICE dataset. These experiments
systematically evaluate the contribution of each proposed
module by progressively adding components to the baseline
architectures. Table IV presents the quantitative results of
this ablation study.

ICEYOLO Component Analysis. For ICEYOLO, we eval-
uate the individual and combined contributions of the Adap-
tive Keypoint Redistribution algorithm (AKR) and Channel
Attention Mechanism (CAM). The baseline configuration uses
the original YOLOv8 architecture without any modifications.
Figure 5 (left) visualizes the comparative results between
YOLOv8 and ICEYOLO.

The baseline achieves an mIoU of 80.4%. The incorporation
of AKR alone yields a performance improvement of 0.68%,
reaching 81.08% mIoU. This improvement demonstrates that
the proposed keypoint redistribution strategy effectively pre-
serves boundary integrity during the semantic-to-instance label
conversion process, particularly benefiting the segmentation of
irregularly shaped river ice formations.

The incorporation of CAM alone elevates the mIoU to
82.1%, reflecting a notable improvement of 1.7% over the
baseline. This significant enhancement suggests that the CAM
effectively captures subtle textural differences among various
ice types, allowing the model to classify pixels more accurately
based on their contextual information. Furthermore, AKR
module enhances segmentation precision for complex and
irregularly shaped ice formations. When both AKR and CAM
are integrated into the full ICEYOLO framework, the model
attains its highest performance, reaching 82.48% mIoU. The
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TABLE III: Performance comparison on three public river ice segmentation datasets: NWPU YRCC EX, NWPU YRCC2,
and the Alberta River Ice Segmentation dataset. Our proposed models (ICEYOLO and ICEFormer) are highlighted in bold.
The best-performing results for each dataset are marked in red, while the second-best results are marked in blue.

Method
mIoU (%)

NWPU YRCC EX [29] NWPU YRCC2 [29] Alberta River Ice Segmentation dataset [24]

ENet [77] 89.94 81.37 80.75
CGNet [78] 90.93 80.49 81.62
DABNet [79] 90.05 80.12 82.13
FPENet [80] 83.61 76.89 79.89
FSSNet [81] 89.15 79.63 78.04
LEDNet [82] 91.27 81.81 81.56
ContextNet [83] 87.16 77.83 78.64
FastSCNN [84] 87.13 77.36 78.11
ERFNet [57] 91.57 81.58 81.94
LinkNet [85] 90.45 81.29 82.12
BiSeNet [15] 89.72 80.09 81.24
STDC-2 [86] 91.18 81.46 81.86
PP-LiteSeg-T2 [87] 89.54 79.99 80.39
PIDNet-S [16] 90.21 80.29 81.27
PIDNet-L [16] 91.25 81.22 82.10
ICEYOLO (Ours) 88.65 92.34 93.17
ICEFormer (Ours) 92.98 90.89 96.82

TABLE IV: Ablation Study Results on NWPU YRCC GFICE
Dataset

Method mIoU (%)
ICEYOLO Variants

Baseline (YOLOv8) 80.40
+ AKR 81.08
+ CAM 82.10

+ AKR + CAM (ICEYOLO) 82.48

ICEFormer Variants
Baseline (SegFormer) 83.45
+ FFL (ICEFormer) 83.83

AKR: Adaptive Keypoint Redistribution;
CAM: Channel Attention Mechanism;

FFL: Feature Fusion Layer

superiority of this combined approach is further illustrated in
the qualitative comparisons shown in Figure 5 (left), high-
lighting the improved delineation and class-specific accuracy
achieved by the proposed modules relative to the baseline.

ICEFormer Feature Fusion Analysis. For ICEFormer,
we evaluate the contribution of the proposed Feature Fusion
Layer (FFL) by comparing the enhanced model against the
standard SegFormer baseline. The baseline SegFormer ar-
chitecture achieves 83.45% mIoU on our dataset, establish-
ing a strong foundation for transformer-based segmentation.
Figure 5 (right) visualizes the comparative results between
Segformer and ICEFomer.

The incorporation of the multiscale Feature Fusion Layer
increases the performance to 83.83% mIoU, representing an
improvement of 0.38%. While this enhancement appears mod-
est in absolute terms, it is statistically significant and demon-
strates the value of explicitly modeling multiscale feature
relationships for fine-grained river ice classification. By fusing
features across different dimensions, the Feature Fusion Layer

substantially improves the model’s capacity to segment classes
with higher accuracy, effectively capturing ice formations
of various scales from small drift ice fragments to large
consolidated blocks. This improvement is further corroborated
by the qualitative results presented in Figure 5 (right), which
illustrate the enhanced discriminative capability enabled by
this fusion strategy.

VI. CONCLUSION

In this study, we address the critical gap in fine-grained
river ice segmentation using satellite image by introducing
the NWPU YRCC GFICE dataset. This dataset constructed
from multi-spectral GF-2 satellite images, provides pixel-level
annotations across eight detailed categories and spans multiple
freeze-thaw cycles of the Yellow River. It is the first publicly
available satellite-based dataset specifically designed for fine-
grained river ice classification.

To benchmark segmentation performance, we develop two
tailored models: ICEYOLO and ICEFormer. ICEYOLO, based
on the YOLOv8 architecture with targeted enhancements in-
cluding Adaptive Keypoint Redistribution and Channel At-
tention Mechanism, achieves an excellent balance between
segmentation accuracy and inference speed. ICEFormer, built
upon the SegFormer framework with multiscale feature fu-
sion, achieves the highest segmentation accuracy among all
evaluated methods. Extensive experiments demonstrate that
both models outperform numerous existing methods on the
NWPU YRCC GFICE dataset, while maintaining strong gen-
eralization capability across three public river ice datasets.

The NWPU YRCC GFICE dataset and the proposed mod-
els provide benchmarks for advancing satellite-based river ice
monitoring. Future work will explore more efficient Trans-
former architectures and self-supervised learning strategies
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Fig. 5: Visual comparison of YOLOv8 vs ICEYOLO (left) and Segformer vs ICEFormer (right) on NWPU YRCC GFICE
dataset.

to further enhance segmentation performance under limited
labeled data conditions.
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