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Abstract—Online Class-Incremental Learning (OCIL) enables
models to learn continuously from non-i.i.d. data streams and
samples of the data streams can be seen only once, making
it more suitable for real-world scenarios compared to offline
learning. However, OCIL faces two key challenges: maintaining
model stability under strict memory constraints and ensuring
adaptability to new tasks. Under stricter memory constraints,
current replay-based methods are less effective. While ensemble
methods improve adaptability (plasticity), they often struggle
with stability. To overcome these challenges, we propose a novel
approach that enhances ensemble learning through a Global
Workspace Model (GWM)—a shared, implicit memory that
guides the learning of multiple student models. The GWM is
formed by fusing the parameters of all students within each
training batch, capturing the historical learning trajectory and
serving as a dynamic anchor for knowledge consolidation. This
fused model is then redistributed periodically to the students to
stabilize learning and promote cross-task consistency. In addition,
we introduce a multi-level collaborative distillation mechanism.
This approach enforces peer-to-peer consistency among students
and preserves historical knowledge by aligning each student with
the GWM. As a result, student models remain adaptable to new
tasks while maintaining previously learned knowledge, striking
a better balance between stability and plasticity. Extensive
experiments on three standard OCIL benchmarks show that our
method delivers significant performance improvement for several
OCIL models across various memory budgets.

Index Terms—Online Class Incremental Learning, Global
Workspace, Knowledge Distillation, Plasticity and Stability Bal-
ance

I. INTRODUCTION

Class-Incremental Learning is designed to integrate the
knowledge of classes from a stream of data with an evolved
distribution [1]. Depending on whether the learner has un-
limited access to the current task’s training data for multiple
epochs, existing methods can be divided into two settings:
offline and online. This paper tackles the more challenging
Online Class-Incremental Learning (OCIL) task, where the
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model can use data samples for only one epoch of training
[2[-[4]]. While OCIL is more efficient in terms of memory
and computation, the one-epoch training introduces numerous
challenges [J5]].

To mitigate the notable performance drop of previously
learned tasks, known as catastrophic forgetting (CF) [6], most
existing OCIL works rely on data replay techniques [3[], [4],
[7]-[O]l. Specifically, a memory buffer is employed to store a
few samples from old tasks. Then, an input batch is drawn
from the data stream and merged with a randomly selected
memory batch for model training. Following this basic frame-
work, several aspects of replay techniques have been explored.
Many works focus on designing efficient strategies for memory
updating [3]], [10] or memory retrieval [8]], [[11]]. Besides, some
methods explored how to use data stream and memory samples
more efficiently such as augmenting classifiers [12], [13]] and
developing new loss functions [[14]]—[16].

While these studies have enhanced the overall accuracy
through mitigating CF, they neglect the challenge of learning
new tasks. Due to the one-epoch training constraint, the OCIL
model encounters under-fitting and shortcut learning, leading
to biased, non-essential features and inadequate generalization
[17]. To enhance plasticity, Wang et al. [18] first proposed
the use of two peer learners to simultaneously learn from
data, which is further augmented with a distillation chain.
Although it improves plasticity, the overall stability is lim-
ited. Moreover, in practical applications, the memory size
limitation tends to be stricter, coupled with an increased
number of classes to master. Consequently, the quantity of
memory samples per class is considerably reduced, further
exacerbating the challenge of maintaining old knowledge.
On the other hand, cognitive scientists have built a well-
known global workspace theory (GWT) [19]-[21]. In this
theory, there exists a shared, dynamic workspace in the brain,
called global workspace (GW). Multiple independent modules
strive to transmit information to GW via attention, while GW
intermittently disseminates global data back to the students
in response to task demands and external stimuli. Its inherent
dynamism allows the brain to flexibly adjust its information
processing strategies over time, thereby improving overall
cognitive efficiency.

Inspired by the GWT theory, we propose to enhance
ensemble learning by introducing a global workspace for
OCIL, which serves as an implicit knowledge memory and
directs the learning of student models. To construct the global
workspace efficiently, we draw on theoretical foundations from
optimization, parameter space and generalization. The concept
of linear mode connectivity suggests that models initiated
identically but trained with various SGD noise generally
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converge to a common loss basin [22]]. These diverse models
can be unified through linear interpolation to form a model
that inhabits a flat, low-loss region. This leads to greater
robustness against perturbations compared to sharp minima
[23]], thereby offering more reliable and generalized solutions.
Thus, we adopt a linear combination of multiple students’
parameters to construct the GWM, which can reflect the
upper and lower bounds of the local region’s loss. To further
preserve the optimal minima over past training batches, the
exponential moving average (EMA) is employed to update the
GWM, effectively stabilizing the loss curvature in a manner
similar to sharpness-aware minimization (SAM) [24]. This
moving average mechanism enables the GWM to serve as
a stable reference for long-term knowledge. Therefore, we
use it to direct the student learning process. Specifically,
we develop a parameter fusion mechanism, where the GWM
parameters are periodically propagated back to students in a
specific proportion. By doing this, we can prevent the students
from deviating from the historical optimal, thus ensuring the
learning of students and the construction of GWM.

Moreover, we design a multi-level collaborative distillation

mechanism for overall model learning. Besides the cross-
entropy (CE) loss for each student, we design a knowledge
distillation (KD) loss to align the outputs of the two students.
Additionally, we introduce another KD loss for synchroniz-
ing the outputs of GWM and students, thereby guiding the
students towards the average trajectory. Through these losses
and parameter fusion, the students’ parameters are pushed
towards the historical optima, mitigating the risk of parameter
drift while preserving the model’s plasticity. Meanwhile, this
effectively flattens the loss basin around the students’ solution,
leading to improved stability and generalization across differ-
ent tasks. The overall framework is a fundamental strategy,
which can be applied to a wide range of existing OCIL
approaches.

Our main contributions can be summarized as follows:

e We propose to establish a global workspace model
(GWM) for OCIL, which works as an implicit knowledge
memory and directs the learning of multiple students.

o We devise a multi-level collaborative distillation mecha-
nism to enforce the consistency of students by synchro-
nizing their predictions and preserve historical knowledge
by aligning each student with the GWM.

o Extensive experiments on three popular OCIL bench-
marks demonstrate the effectiveness of the proposed
method, achieving new state-of-the-art performance.

The rest of this article is organized as follows. Section
gives a brief review of related work. In Section we
introduce the proposed method. Then we present and analyze
the experimental results in Section Finally, Section E]
concludes this study and outlines directions for future research.

II. RELATED WORK
A. Online Class Incremental Learning

In OCIL, replay-based methods have gained significant
attention due to their effectiveness and simplicity [5]. A
pioneering replay-based work is Experience Replay (ER),

which adopted a reservoir sampling algorithm and a random
updating strategy for memory management [9]]. Building upon
this foundation, numerous replay-based variants have been
developed. Some focus on enhancing memory update and
retrieval strategies [8], [[11], [25]]. For instance, MIR [11]
retrieved memory samples that are most interfered by the
incoming data batch. SSD [3|] condensed stream data into more
informative exemplars for efficient storage.

Meanwhile, other efforts are directed at improving model
learning through architectural innovations [12], [18]], [26]-
[28]] and novel optimization objectives [15[], [25], [29]-[31].
Wang et al. [12] designed a continual bias adaptor to augment
the classifier. To tackle the overfitting-underfitting dilemma,
MOSE-MOE [28] introduced a stacked sub-experts model,
which was optimized by multi-level supervision and reverse
self-distillation. Recently, Wu et al. [4] introduced a dual-
domain division multiplexer to alleviate both inter-task and
intra-task bias, which intervenes confounders and multiple
causal factors over frequency and spatial domains.

For the objective function, ER-ACE |[/15] replaced the vanilla
CE loss with an asymmetric variant to mitigate representation
drift. OCM [14] maximized mutual information between the
old and new representations. [29] introduced a gradient self-
adaptive loss to solve the cross-task discrimination problem.
UER [32] decomposed the conventional logits of the dot
product into an angle factor and a norm factor, using the angle
component to learn current samples and both components
for replay samples. Based on the principle of maximum a
posterior estimation, Michel et al. [33]] devised a novel loss
function, enforcing the learned representations to distribute on
the unit sphere. Pareto optimization has also been adopted
to capture the interrelationship among previously learned
tasks [34]. Zhou et al. [7] proposed a balanced destruction-
reconstruction module, which tries to reduce the degree of
maximal destruction of old knowledge to achieve better knowl-
edge reconstruction. Seo et al. [31]] proposed preparatory data
training to induce neural collapse and a residual correction
module to reduce discrepancies during inference. To address
task recency bias in the combination of the fully connected
layer and softmax, supervised contrast learning [35]] has been
incorporated into OCIL and has enhanced performance [13],
[36], [37]. For example, SCR [36] combined the supervised
contrastive loss and nearest class mean (NCM) classifier.
PCR [13] further introduced a proxy-based contrastive loss
to address the imbalance issue.

B. Knowledge Distillation in OCIL

To alleviate CF, KD [38]] has been widely used in offline
CL, where the model learned on old tasks serves as a fixed
teacher [39]-[43]]. Conversely, its application in OCIL is still
relatively restricted [44], [45]. Because of the only one-epoch
training constraint, the model tends to experience issues such
as under-fitting and shortcut learning [4]], [17], leading to a less
effective teacher. As it fails to capture the critical features, KD
ultimately becomes more harmful than beneficial for model
update [30]. To address this problem, momentum knowledge
distillation was applied to OCIL in [30]. Instead of a student
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Fig. 1: Overview of the proposed method. For the combination of a stream data batch and a random retrieved memory batch, we
apply two distinct augmentation strategies. The resulting augmented batches and their original batch are fed into two students
and Global Workspace Model (GWM) to produce logits. In each training iteration, we use a linear combination of students’
parameters to construct the GWM. Moreover, GWM’s parameters are periodically fused back into students. We use blue, dark
green and red lines to represent the forward processes of various models. “sg" denotes the stop-gradient operation.

and a well-trained teacher, Wang et al. [18] applied KD to
two peer learners. Although enhancing model plasticity, it
lacked an explicit mechanism for mitigating forgetting. In 23],
reverse self-distillation was developed to gather knowledge of
various experts from shallow to deep.

Unlike previous research, we focus on addressing the sta-
bility challenges of ensemble models without compromising
their adaptability. To accomplish this, we develop a GWM
and employ multi-level collaborative distillation to steer the
learning of various student models.

III. METHODOLOGY
A. Problem Definition

An OCIL model is trained on a non-i.i.d. data stream
consisting of T tasks. In the t-th task, its training data is
Dy = {X!,yt )Nt | where X! denotes the n-th image with
label y!, € V¢, and N is the number of all images in this
task. The labels of any two tasks are non-overlapping, that is,
YVinYy = forVije€ {l,...,T},i # j. BEach sample
can be used to train the model only once, unless stored in
the fixed-size memory buffer M. During testing, the model is
assessed on a test set containing samples of all learned classes.

B. Overall Framework

In this paper, we propose a multi-level collaborative distil-
lation based deep model fusion for OCIL, aiming to explicitly
improve model stability while maintaining plasticity. Fig. [I]
illustrates the framework of our method, which consists of
two modules: data augmentation and deep model fusion. In
data augmentation, each data batch from the current stream
is combined with a batch retrieved from the memory buffer,
resulting in a batch B. Then, two kinds of data augmentation
strategies are applied to the batch B. Next, both the original

and the different augmented batches are fed into the deep
model fusion module. There are two student networks and
a Global Workspace Model (GWM). The two students have
identical network structure and the same random initialization.
The GWM is a deep fusion of the two students, encoding
the historical parameter optimization trajectory as an implicit
knowledge memory. By periodically feeding the GWM back
to the students, the GWM acts as a dynamic anchor to guide
student learning.

To optimize our model, we devise a multi-level collaborative
distillation mechanism. Besides the traditional CE loss, an
online KD loss is employed between the two students. By
aligning their predictions for distinct augmented versions
of identical data, we can enhance the diversity of the two
students, thereby improving their plasticity. In addition, we
develop another KD loss for the GWM and the two students,
which compels the students to adhere to historical consensus
and strengthens their long-term memory.

Since there are no constraints on the student models, many
replay-based CIL methods are eligible to serve as the student
models. In other words, our method can be integrated with
many existing replay-based models. In the following, we pri-
marily detail deep model fusion and multi-level collaborative
distillation.

C. Deep Model Fusion

The one epoch training constraint poses more challenges for
optimizing the OCIL model, such as under-fitting, shortcut
learning, and the risk of a narrow loss minimum. In other
words, the non-essential features and the local minimum will
lead to poor generalization. Moreover, due to relatively low
robustness of model parameters and imbalanced quantity of
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samples between old tasks and new task, the model update
for new tasks will destroy the knowledge of old tasks.

To boost the convergence of online continual learners,
[18] combined the ensemble model with online knowledge
distillation (OKD). However, previous studies have shown that
over-parameterized students tend to diverge from each other
during training, even under the supervision of KD loss [46],
[47]. Although OKD significantly improves the plasticity of
model under one-epoch training, this loose coupling may cause
the parameter space to gradually disperse, leading to the loss
of a unified representation of old knowledge. Besides, the
distillation relies only on the knowledge sharing between two
models from the current batch, without explicitly solidifying
old knowledge. Both of these aspects severely affect the model
stability. Moreover, the plasticity in [18] only represents the
learning performance of the model on the current task. It
is not sure whether the features learned by the OKD model
really generalize, and whether the generalization of the model
across tasks really improves. Hence, explicitly enhancing
model stability while maintaining plasticity is very important
for ensemble models.

Instead of aligning the outputs of various models, we
propose to directly manipulate model parameters. Specifically,
we construct a global workspace based on parameter fusion
to enhance the stability and generalization of the model
while maintaining plasticity. Firstly, we construct a GWM by
performing a linear combination of the parameters of multiple
students, which approximates the solution of the parameter
space surrounding the student models.

r; = [ril, ... ,TZM] ~ Dir(§), (1)

M

69" = 3 ey

m=1

where i denotes the i-th training batch, ©FWM and ©7" are the
parameters of feature extractor for GWM and the m-th student
in the ¢-th training batch, M is the number of students, and r;
is a weight vector constrained by Z%:l 7" = 1. The distri-
bution Dir(€) refers to the Dirichlet distribution parameterized
by ¢ € RM. In our actual experimental setting, there are two
students. And we set 7! and r? as 0.5 for all iterations. Since
the classifier weight WEWM and W are updated similarly,
we just detail the formulation for the feature extractor for
simplicity. As the GWM represents the surrounding parameter
space encompassed by multiple students, its classification loss
showcases the maximum and minimum bounds of loss in the
vicinity of the student models [48]]. Therefore, minimizing this
loss can flatten the loss surface and establish a more stable loss
minimum. This pursuit of flatter minima serves as an implicit
form of regularization, improving model generalization and
enabling the student models to converge to a wider and more
robust solution space.

In Eq. (1), the GWM model is updated at each training
batch, thus obtaining optimal parameters for the current data
batch. However, due to the one-epoch training and extremely
limited memory batch size, sample noise and outliers will
induce parameter fluctuations, thereby impacting the training
process. To establish a stable reference and retain knowledge
over more data batches, we integrate the parameters of the

current batch with those from the previous batches using the
exponential moving average:

07" = (1 - )0 ™M + a®F ™, 2

where « is a hyper-parameter. This fusion not only facilitates a
smoother and more stable training procedure but also enables
the GWM model to act as a bridge between new and old tasks.

The two students are trained using distinct augmented
data batches, leading their parameters to diverge significantly.
Thus, directly taking their average will produce a poor model
because of the non-linear nature of deep neural network. To
mitigate excessive divergence, we design a parameter fusion
mechanism to explicitly force the student parameters towards
the history-smoothing space path. In particular, we fuse the
GWM and students in a specific proportion at regular intervals:

If mod(i, A) = 0: 07 = (1 — )0 +y0FWM  (3)

where A and 7 are two hyper-parameters denoting the fusion
interval and ratio, respectively. A can be set at the task or batch
level, such as every task or every fifty batches. According to
Eq. (@), the parameters of students are confined to the vicinity
surrounding the GWM. As a result, the students not only learn
different patterns but also avoid excessive divergence.

D. Multi-level Collaborative Distillation

The architecture of our model consists of multiple students
and a GWM. To promote effective interaction, we design
a multi-level collaborative distillation mechanism for overall
model learning, which comprises the CE loss, KD loss be-
tween students and KD loss between students and GWM.

For each student, we first utilize the ground-truth labels of
samples to steer its learning process. In particular, if f(-;©)
represents the feature extractor of student 1, the CE loss of
student 1 is computed as follows:

log | — ) (4)
(x,y)e;ml(zs) <Zj€Ct e/ (X0

where C; signifies the set of all observed classes up to task
t, hy denotes the data augmentation for student 1, y is the
ground-truth label of sample X, and Wzl} represents the weight
for class y in the classifier of student 1.

While both students receive distinct augmented data from
the same data batch, it is infeasible for them to interact solely
through the CE loss. To enhance cross-student interaction, we
develop a KD loss to align the predicted probability from the
two students. For a sample X, the probability that the student
1 assigns it to class ¢ € C; is given by

f(x;0h)w!

1 _
LCEff

ef (X0 wl/T

pe = (5)

f(x;e1)ywh/r’
2jec, © !

where 7 is the temperature hyper-parameter. Therefore,
p'(X) = {pl: c € C;} symbolizes the predicted probabilities
for all seen classes according to student 1. p?(X) is derived
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similarly for student 2. Given these probabilities, the KD loss
between students can be expressed as

Lip= Y D(p"(X)p*(X))+
(X,y)eB

D (p' (h1(X)[Ip*(h2(X))) , (6)

where D(- || -) is the KL divergence. In Eq. (6), we also align
the probabilities across various augmented views of the same
data, improving the multi-view consistency of the students.
Furthermore, to encourage students towards average trajec-
tory, we introduce another KD loss for outputs of GWM and
students. Specifically, for student 1, it can be calculated as

> DE@PT™MX), O

(X,y)eBUR,(B)

1 —
LGWMKD -

where pSYM(X) denotes the predicted probabilities of all
observed classes from the GWM model. Utilizing the GWM
as a dynamic knowledge anchor, this equation helps avoid
significant deviations in students, which might cause the loss
landscape to a narrow crevice. By maintaining this, we can
retain the model’s sensitivity to the crucial features of previous
tasks, thus enhancing cross-task generalization.

Ultimately, by combining the above CE loss, KD loss
and GWM KD loss, we can establish the overall multi-level
collaborative distillation (MCD) loss for student 1:

Litop = Lég + Likp + ALawukns 3)

where A is a hyper-parameter regulating the proportion of
alignment from the GWM model. The loss L for student
2 can be calculated similarly.

E. Overall Optimization Objective

To optimize the model parameters, the overall training loss
L' for student 1 incorporates its original loss together with
the aforementioned MCD loss,

Ll = L]13aseline + LI{/ICD7 (9)

where L}, ... denotes the loss function of an existing model
to which our model adapts. L? is computed for student 2 in a
similar manner.

During inference, a test sample is fed into two student
models to produce their respective probabilities. We take their
average as the final prediction. The entire process of training

and inference is detailed in Algorithm [T}

IV. EXPERIMENTS
A. Experiment Setup

1) Evaluation Datasets and Metrics: Following previous
work [3], [18]], we conduct experiments on three widely
used datasets for OCIL: split CIFAR-100 [49]], split Tiny-
ImageNet [50] and split ImageNet-100 [51]. Both CIFAR-100
and ImageNet-100 are divided into 10 tasks with 10 classes
per task. The split Tiny-ImageNet contains 100 disjoint tasks,
each of which includes 2 classes.

Algorithm 1 Multi-Level Collaborative Distillation based
Deep Model Fusion for OCIL

Input: Memory buffer size M,; Learning rate [r

Init: Memory buffer M < {} % M,; Number of observed
samples n < 0; Parameters of student 1 {@1,W1},
student 2 {©2,W?} and GWM {OSYM WOYM1. Srudent
1 and Student 2 are initialized identically; Two AdamW
optimizers optim1 and optim?2.

1: for t € {1,...,T} do

2: // Training Phase

3. for B; ~ D; do

4 B <= RandomRetrieve(M) // Memory batch
5: B« B, UBy

6: // Perform different data augmentation

7: Do data augmentation B < B U hy(B)

8: Do RandAugment B < B U hy(B)

9: Calculate the feature representation

10: Calculate probability prediction via Eq. (§)

11: // Update student 1 parameters. Student 2 is similar
12: Calculate the CE loss L{y via Eq. @)

13: Calculate the KD loss L, via Eq. (6)

14: Calculate the GWM KD loss Lwmkp via Eq. (7)
15: Calculate Licp by Liyicp < Lég + Lip + ALwwmkn
16: Calculate L' by L' + Ly, iine + Litcp

17: O, W' «— optim1(L*, ©1, W', Ir)

18: // Update GWM parameters

19:  Update ©SWM, W™ for GWM via Eq. (1] &
20: // Parameter fusion between GWM and Students
21 if (i+1) mod A ==0 then
22: Update student 1 and 2 using GWM via Eq. (3)
23: end if
24: // Memory Update
25: M « ReservoirUpdate(M, B;, Mg, n)

26: n < n+ |5
27:  end for
28:  // Inference Phase (Optional)
29:  for X ~ Dy, do

30: Compute probability for ¢ € C; = ;Zlykl

31: Predict the label by 3 + arg max M

t

32:  end for
33: end for

Following prior research [18]], we typically present the final
average accuracy (FAA) and final relative forgetting (FRF) to
assess performance across all tasks, which are defined as:

L T
Ar = TZCLT,J‘,

(10)
j=1
1 T
RFr = T ZfT,j»
j=1
aj —ar;
Lo fri= Y ALY 11
s.t. fr,j mﬁf?ﬁ}( e ) (11

where ar ; and fr ; denote the accuracy and relative forgetting
rate of task j after training model on the last task 7', respec-
tively. Relative forgetting measures how much proportion of
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TABLE I: Comparison of FAA (%) with constrained memory sizes for individual baselines, those integrated with CCL, and
those combined with our approach. The best scores are highlighted in boldface. All results are the average of 5 runs.

Dataset CIFAR-100 (10 tasks) Tiny-ImageNet (100 tasks) ImageNet-100 (10 tasks)
Memory Size (Ms) 0.1K 0.2K 0.5K ‘ 0.2K 0.5K 1K ‘ 0.2K 0.5K 1K

ER (2019) [9] 7.4+0.7 8.6+0.5 10.9+1.1 0.9+0.1 0.9+0.1 1.0+0.1 8.1+1.6 11.6+1.6 14.9+0.8
ER+CCL-DC (CVPR 2024) [18] 11.841.1 15.1+1.2 23.3+1.4 3.1+0.5 6.8+0.4 6.8+1.8 11.8+ 13 17.5+ 11 24.34 05
ER+Ours 21.6 £ 14 28.0 £ o9 34.5 £ o8 7.6 £ os 11.5 & o7 15.6 + o8 14.8 + 11 21.9 +£ 03 28.9 +£ o7

SCR (CVPR 2021) [36] 8.1+0.9 11.0+1.1 15.3+1.3 2.8+ 07 6.2+ 03 8.6+ 06 9.2+ 09 14.3+ 05 16.9+ 09
SCR+CCL-DC (CVPR 2024) 18] 12.0+1.3 17.8+1.3 28.7+1.2 3.1+ 09 8.5+ 06 13.0+ 10 13.24 11 22,4+ 17 319 + 15
SCR+Ours 124 + 13 19.2 + 14 29.0 £ os 37 £ 14 9.8 £+ 11 14.6 + o3 139 + 16 225 + 14 31.4+ 12

ER-ACE (ICLR 2022) [15] 10.44+ 14 14.1+ 25 19.0+ 24 3.9+ 06 5.9+ 03 8.6+ 05 13.6+ 08 18.24 20 22.8+ 14
ER-ACE+CCL-DC (CVPR 2024) 18] 15.24 07 19.6+ 06 27.4+ 038 5.8+ 06 8.6+ 07 11.5+ 08 18.1+ 15 26.7+ 04 32.5+ 18
ER-ACE+Ours 17.1 £ 13 23.1 £ 13 29.9 + 23 6.3 £ os 9.2 £ os 12.6 £ 10 223 + 13 293 + 16 35.6 & os

OCM (ICML 2022) [14] 7.240.3 10.1+0.9 15.541.1 4.5+0.7 7.540.4 10.1+0.6 7.241.1 9.2+1.2 12.240.7
OCM+CCL-DC (CVPR 2024) [18] 9.4+1.0 11.940.7 17.441.6 4.7+0.6 7.9+0.9 12.941.1 10.4+0.4 13.8+1.1 19.7+1.8
OCM+Ours 14.9 + o8 19.9 + o6 274 £ o4 8.1 £ 10 119 + 15 16.1 £ os 14.4 + 34 21.3 £+ 19 28.3 + 23

GSA (CVPR 2023) [29] 12.1+ 06 14.6+ 09 19.8+ 13 3.5+ 08 5.2+ 06 T1+o06 11.5+ 08 15.7+ 16 20.2+ 11
GSA+CCL-DC (CVPR 2024) [18] 12.8+ 12 16.5+ 06 25.3+ 09 2.2+ 05 3.8+ 10 7.8+22 12.1+ 09 17.8+ 14 25.1+ 10
GSA+Ours 18.8 + 13 248 + 13 32.0 £ 1s 7.8 £ os 11.2 + o6 14.6 + 12 16.1 + 12 233 + 14 30.2 + 32

PCR (CVPR 2023) [13] 15.1+ 07 19.0+ 07 25.7+ 17 5.8+ 08 8.3+ 06 11.6+ 09 16.3+ 19 221+ 12 272+ 12
PCR+CCL-DC (CVPR 2024) [18] 14.7+ 14 19.3+ 12 25.5+ 15 3.1+ 12 8.0+ 10 12.6+ 11 12.5+ 13 18.8+ 15 27.1+32
PCR+Ours 26.8 £ 22 31.3 £ os 36.3 £ 09 8.7 £ 10 13.2 + o7 16.2 + os 22.6 £ o7 30.9 £ 04 36.5 £ 12

MLG (PR 2025) [52] 15.6+ 1.1 18.6+ 1.1 24.4+ 08 3.4+ 11 6.0+ 08 8.5+ 12 17.2+ 16 22.8+ 08 27.6+ 10
MLG+CCL-DC (CVPR 2024) [18] 16.5+ 12 20.9+ 10 29.0+ 10 5.6+ 09 9.8+ 08 13.3+ 12 20.9+ 18 26.7+ 20 31.8413
MLG+Ours 22.7 + o8 28.3 + 12 34.6 + os 7.5 £ o6 11.2 + o7 15.0 + 11 22.8 + 25 309 + 11 354 + o7
MOSE-MOE (CVPR 2024) [28] 14.7+ 07 19.4+ 12 27.24 09 4.7+ 05 9.1+ 04 13.2+13 16.7+ 18 26.0+ 11 31.3+ 20
MOSE-MOE+CCL-DC (CVPR 2024) [18] 14.4+ 11 19.5+ 22 31.7+ 11 5.1+0.9 9.5+1.2 16.8+0.6 15.8+2.1 24.842.1 36.0+3.1
MOSE-MOE+OQOurs 20.0 + 15 27.0 + 19 36.2 + 11 8.7 £ os 14.4 + o7 19.3 + o4 18.9 + 24 29.8 + 14 393 + 12

performance the model forgets. In contrast to traditional for-
getting measure, relative forgetting alleviates the bias towards
poor plasticity, providing a fairer evaluation. Additionally, we
use average learning accuracy (ALA) LAp to evaluate the
model’s plasticity, adhering to the definition in [[18]].

T
LAr = % Zaj,j. (12)
j=1
A superior performance is indicated by a higher FAA or ALA,
or a lower FRF. All reported results are the average of 5 runs
to reduce randomness. In each experimental run, the order of
classes is shuffled for all datasets before splitting the tasks.

To assess our method under both restricted and standard
memory sizes, we perform experiments utilizing extremely
limited memory as well as standard memory capacities. Under
constrained conditions, the memory size is configured to 0.1K,
0.2K, 0.5K for CIFAR-100, and 0.2K, 0.5K, 1K for Tiny-
ImageNet and ImageNet-100. Under standard conditions, the
memory size is increased ten times.

2) Implementation Details: We employ the full ResNet-18
network without pre-training as the backbone for all methods
and datasets. Like [9]], random retrieval and reservoir sampling
are used for memory management, which are denoted as
RandomRetrieve(-) and ReservoirUpdate(-) in Algorithm
As we focus on extremely constrained memory and small
memory batch size, the batch size is set to 10 for both the data
stream and memory samples. To ensure a fair comparison,
the same optimizer AdamW is applied for all experiments.
Note that two separate AdamW optimizers are utilized for the
two student models in our model. We tune the learning rate,
weight decay, and other hyper-parameters for each baseline by
maximizing its FAA score. Then, they are maintained when

applying CCL-DC and our approach. Refer to the YAML
files in our code repository for their detailed values. The
values of v, A and « are assigned to 0.5, 1 Task and 0.01,
respectively. The temperature hyper-parameters 7 in Lkp and
Lowwmkp are configured at 4.0. The optimal value of A
depends on the baseline, so refer to the released code for its
exact configuration.

Different augmentation techniques are applied to two stu-
dent models. For student 1, we apply a transformation opera-
tion including random crop, random horizontal flip, color jitter
and random grayscale. In contrast, RandAugment [53] is used
for student 2. It contains two extra hyper-parameters /N and M,
which are set as 3 and 15 in all experiments. Besides, several
baselines possess their own data augmentation strategies. For
a fair comparison, both models trained with CCL-DC and our
method maintain these unique data augmentation techniques.
Specifically, the ER, SCR, and PCR utilize random cropping,
horizontal flipping, color jitter and random grayscale. The
color jitter parameters are set to (0.4, 0.4, 0.4, 0.1) with a
probability of 0.8, while the random grayscale is applied with
a probability of 0.2. For ER-ACE, OCM, GSA and MOSE-
MOE, the augmentation consists of random cropping and ran-
dom horizontal flip. Notably, OCM introduces global rotation
augmentation combined with inner flipping, generating 15
times more training samples. GSA and MOSE-MOE adopt
the inner flip operation to double the training samples.

B. Comparison with SOTA Methods

To evaluate the effectiveness of the proposed method, we
applied it to several typical OCIL methods, including ER [9],
SCR [36], ER-ACE [15], OCM [14], GSA [29], PCR [13],
MLG [52], and MOE-MOSE [28]. For comparative analysis,
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TABLE II: Comparison of FAA (%) with standard memory sizes for individual baselines, those integrated with CCL, and those
combined with our approach. The best scores are indicated in boldface. All results are the average of 5 runs.

Dataset CIFAR-100 (10 tasks) Tiny-ImageNet (100 tasks) ImageNet-100 (10 tasks)
Memory Size (Ms) IK 2K 5K 2K 5K 10K ‘ 2K 5K 10K

ER (2019) [9] 14.3+1.0 20.3+0.8 29.2+41.6 0.9+0.2 1.3+0.3 1.5+0.4 14.6+2.0 20.9+2.2 24.5+2.0

ER+CCL-DC (CVPR 2024) [18] 27.9+1.1 30.6+2.0 31.2+1.4 7.241.7 7.7+0.5 8.3+1.9 32.1+17 37.4+ 11 40.1+ 04
ER+Ours 384 £ o9 42.0 £ 12 43.7 £ 16 19.1 + o9 19.5 + 19 18.8 + 1s 329 + 23 40.6 £ 10 424 + 13

SCR (CVPR 2021) [36] 18.4+0.8 20.3+0.9 22.4+0.4 10.8+ 08 12.7+ 07 13.8+ 08 19.0+ 14 20.4+ 11 20.7+ 11

SCR+CCL-DC (CVPR 2024) [18] 35.3+0.8 38.7+1.0 40.3+0.6 15.0+ 09 15.9+ 12 171412 39.5+ 13 44.4+ 09 45.1+ 16
SCR+Ours 37.0 £+ 10 412 £+ 11 432 £ 12 20.5 £ o8 23.1 =+ o6 23.9 + o3 39.5 + 09 44.9 + o7 46.5 £+ 13

ER-ACE (ICLR 2022) [15] 22.3+23 24.5+ 09 26.1+ 14 11.4+ 05 11.7+ 09 10.9+ 11 25.9+ 16 29.8+ 10 32.9+ 10

ER-ACE+CCL-DC (CVPR 2024) [18 31.3+ 10 34.7+ 12 35.4+ 10 14.8+ 11 16.6+ 19 17.24 20 38.0+ 16 43.0+ 07 43.5+ 27
ER-ACE+Ours 34.0 £ os 37.6 £+ 19 399 + 13 159 + 11 19.2 + 20 19.6 + 2.1 39.8 & 07 44.0 £ 11 46.1 £ 11

OCM (ICML 2022) [14] 16.8+1.6 17.6+2.9 19.3+1.8 12.9+0.8 13.3+1.6 14.5+1.4 14.2+1.6 14.6+2.4 14.9+2.0

OCM+CCL-DC (CVPR 2024) [18 20.2+2.7 21.3+1.5 20.5+2.7 17.5+1.1 19.2+3.0 21.1+0.6 24.9+1.5 30.2+2.6 32.6+2.3
OCM+Ours 337 £+ 12 36.0 £ os 36.5 £ 10 21.3 £ 14 239 + 11 23.9 + 20 344 + 13 42.1 + 12 45.1 + 16

GSA (CVPR 2023) [29] 23.8+ 09 26.2+ 22 27.9+ 19 9.3+ 16 12.6+ 08 13.7+ 15 25.7+ 19 32.8+ 21 35.9+ 12

GSA+CCL-DC (CVPR 2024) [18 31.5+ 09 37.8+ 11 41.5+ 25 13.5+ 14 18.8+ 14 18.8+ 11 32.7+ 16 43.5+ 07 48.4+ 13
GSA+Ours 37.7 £ 09 427 + 14 45.8 + o8 179 + 12 21.0 £ o9 245 + 13 384 + 13 459 + 14 49.0 + 13

PCR (CVPR 2023) [13] 29.3+ 11 31.7+ 12 33.6+ 09 12.8+ 08 15.0+ 13 15.2+ 12 32.7+ 15 36.9+ 23 38.8+ 18

PCR+CCL-DC (CVPR 2024) [18] 30.8+ 15 34.1+ 19 36.1+ 18 13.7+13 15.6+ 15 16.3+ 10 34.1+20 39.6+ 34 42.6+ 27
PCR+Ours 40.0 £ 11 42.0 £ o9 43.7 + o8 19.0 £ o9 21.2 + o6 224 + o7 41.7 £ o9 45.5 + o8 464 + 17

MLG (PR 2025) [52] 28.5+ 10 31.3+ 06 33.6+ 08 10.3+ 07 11.7+ 06 11.9+ 08 31.0+ 08 33.3+ 16 34.6+ 08

MLG+CCL-DC (CVPR 2024) [18] 32.5+ 12 35.2+ 10 37.24 04 15.94+ 11 18.4+ 09 18.9+ 12 34.8+ 12 38.1+10 39.2+ 17
MLG+Ours 384 + 11 40.8 + o8 43.5 + o9 21.0 £ 16 251 + os 264 + os 40.0 £ 10 435 £ 10 44.5 + o9

MOSE-MOE (CVPR 2024) [28] 33.3+ 038 38.7+ 07 41.5+ 038 17.3+ 11 20.7+ 10 20.7+ 34 37.3+29 43.3+ 238 43.7+ 25

MOSE-MOE+CCL-DC (CVPR 2024) [18] 40.6+ 1.1 46.8+ 1.1 50.3+ 06 22.1+0.5 27.4+2.5 26.0+1.7 45.8+1.9 53.3+0.7 55.1+0.6
MOSE-MOE+Ours 422 + 14 48.4 =+ o9 51.6 £ o4 244 + o7 29.6 =+ 09 31.2 £ os 46.3 + 2.1 539 + 1s 56.8 £ 07

CIFAR-100 / Memory size 0.1K CIFAR-100 / Memory size 0.1K

Tiny-ImageNet / Memory size 1K Tiny-ImageNet / Memory size 1K

< ~®: ER+CCLDC ~@- ER+Ours + GSA+CCL-DC ~¥— GSA+Ours

ER+CCL-DC ~®- ER+Ours “ ¥ GSA+CCL-DC —¥— GSA+Ours
PCR+CCL-DC ~e— PCR+Ours
MLG+CCL-DC —x—= MLG+Ours
—+— MOSE-MOE+Ours
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Fig. 2: The average accuracy after each incremental step for various baselines when incorporating CCL-DC and ours on
CIFAR-100 and Tiny-ImageNet. Diverse markers represent distinct baselines, where the colors blue and red denote CCL-DC

and Ours, respectively.

we additionally present the results of these baseline methods,
along with their combination with CCL-DC [18].

Table [land [M] present the FAA performance of all methods
across the three datasets. It can be observed that our method
consistently enhances the performance of various baselines by
a large margin, and surpasses the baselines+CCL-DC in nearly
all cases. For example, when using ER as the baseline, we
achieve an accuracy increase of 9.8% ~ 12.9% over CCL-DC
on the CIFAR-100 dataset. When working with highly lim-
ited memory capacities, our approach significantly enhances
FAA. Conversely, the CCL-DC method exhibits only slight
improvement and occasionally reduces performance for some
latest methods. Taking the most effective model, MOSE-MOE,
as an example, applying our method results in increments of
5.3%, 7.6%, and 9.0% under limited memory conditions. In
contrast, the CCL-DC shows performance changes of -0.3%,
0.1%, and 4.5%.

Fig. [2] displays the average accuracy of all observed tasks

after each incremental step on CIFAR-100 (M, = 0.1K) and
Tiny-ImageNet (M ;=1K). The blue and red lines represent the
accuracy curves after the baselines are combined with CCL-
DC and our method, respectively. Obviously, for all baselines,
our approach consistently attains the highest average accuracy
at every step.

To evaluate the balance between stability and plasticity, we
visualize the interplay between ALA and FRF on three datasets
in Fig. [3] The closer a point lies to the top-left corner, the
better the balance is struck. In comparison with CCL-DC,
our method achieves a lower forgetting rate while maintaining
comparable learning accuracy. This demonstrates that our
approach effectively enhances stability without compromising
plasticity, thereby achieving a more favorable balance.

C. Ablation Study

1) Effect of Proposed Modules: Firstly, we analyze the
effect of key modules including the KD between students (Eq.
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Fig. 3: Comparison of stability and plasticity balance on three datasets. The ® (circles), B (squares), and % (stars) represent
the baseline, CCL+DC, and our method, respectively. Various colors are used to distinguish the baselines. The closer to the

left upper corner, the better the balance is struck.

TABLE III: Effect of proposed modules using two baselines on CIFAR-100 and ImageNet-100 datasets. The terms “KD", “Fuse"
and “GWMKD" denote the KD between students, parameters fusion, and KD between GWM and each student, respectively.

All reported results are the average of 5 runs.

Dataset | CIFAR-100
Memory Size(Ms) ‘ 0.1K ‘ 0.5K ‘ 1K ‘ 5K
Baseline ‘ KD Fuse GWMKD ‘ FAA (%) FRF (%) ALA (%) ‘ FAA (%) FRF (%) ALA (%) ‘ FAA (%) FRF (%) ALA (%) ‘ FAA (%) FRF (%) ALA (%)
T.4+0.7 89.2+0.6  64.0+1.3 10.9+1.1  83.9+1.6  64.0+1.3 14.3+1.0 78.5+1.9 63.4+13 | 29.2+1.6 53.0+3.3 61.6+1.3
ER v 9.540.8 87.3+0.6  Tl.241.1 16.94+1.3  77.4+1.4  71.3+1.3 | 23.6409 67.2+1.4  69.841.3 | 33.241.0 52.3+1.7  69.4+1.7
v v 11.5+0.6  85.1+0.7 T74.1+1.1 21.4+1.2  T71.8+1.7 733411 27.9+08  62.4+1.4  T24+0.7 | 36.5+11  50.1+1.3  72.T+1.2
v v v 21.6+1.4  66.1+2.1  61.0+1.5 | 34.5+0.8 33.9+1.8 52.1+1.6 | 384409 33.6+2.0 57.8+1.4 | 43.7+16 27.0+3.0 59.9+18
12.1+0.6  75.2+2.1  44.8+3.8 19.8+1.8  42.8+5.6 34.8+2.4 23.840.0 28.2+3.0 32.0+1.4 279+10  19.6+3.4  33.1+1.4
GSA v 12.3+0.8  82.7+1.9  66.1+1.8 23.4+08  62.8+0.0  60.4+1.3 31.5+1.1 454432 57.0+21 40.0+1.8  28.5+3.9  56.1+2.0
v v 13.7+0.0  81.1+1.9 66.8+1.8 26.1+0.8  58.5+1.2  60.9+2.2 33.5+1.3  43.3+2.7  58.4+2a1 41.9+1.5  29.5+2.4  59.6+1.9
v v v 18.8+1.3  70.3+2.0 61.3+35 | 32.0+1.5 46.0+0.0  58.5+2.3 | 37.7+0.0 34.5+1.7 57.1+1.4 | 458416 22.0+3.0 58.8+1.8
Dataset | ImageNet-100
Memory Size(Ms) | 0.5K | 1K | 5K | 10K
Baseline | KD Fuse GWMKD | FAA (%) FRF (%) ALA (%) | FAA (%) FRF (%) ALA (%) | FAA (%) FRF (%) ALA (%) | FAA (%) FRF (%) ALA (%)
11.6+1.6  77.8+38  49.0+2.1 14.940.8  69.1+3.0 47.2+2.7 | 20.9+2.2 64.9+3.8  57.9+1.2 24.5+2.0 58.2+4.3  58.5+3.5
ER 14.0+0.7  82.1+1.1 71.9+1.0 20.54+0.8  72.9+1.0 T1.6+1.2 35.941.3 494422 69.8+1.6 37.6+1.0 46.2+3.4 69.7+1.4
v v 17.3+0.7 783411  75.040.9 | 249409 67.9+0.0 T744+19 | 39.1+0.7 47.1+0.9  73.1+1.0 | 41.6+1.2 43.6+0.0 T73.4+15
v v 21.9+0.3  71.0x0.7  72.2+1.1 28.9+0.7  60.5+1.2  Tl.4+1a 40.6+1.0  42.8+1.3  T70.8+1.7 | 42.4+13  404+11 Tl4d+ar7
15.7+1.6  69.0+3.2  47.3+22 20.2+1.1 55.1+2.3  43.0+3.0 32.8+2.1  13.6+3.5  35.7+1.5 35.9+1.2  11.0+1.1 36.4+0.7
GSA v 17.042.0 76.9+2.1  68.6+21 | 24.8+1.8 64.8431  67.2+0.0 | 42.6+1.1  30.2+2.6  60.5+1.5 | 46.1+1.8  23.5+2.5  59.9+1.7
v v 18.7+0.0  75.5+1.0 T7l.4+o0.7 | 25.8408 64.2+1.5 68.9+1.1 43.9+1.0  30.842.0  63.0+1.1 48.0+0.7  24.5+0.9  63.5+0.7
v v v 23.3+1.4  66.1+1.0  65.8+1.8 | 30.2+3.2  53.5+48 63.2+1.6 | 45.9+1.4 24.5+1.5  60.6+1.1 | 49.0+1.3 2044309 61.3+1.3

(@), the fusion operation between GWM and students (Eq.
(3)), and the KD between GWM and each student (Eq. (7)),
labeled as “KD", “Fuse", and “GWMKD", respectively. Table
[ presents the results on CIFAR-100 and ImageNet-100,
utilizing ER and GSA as baselines, respectively. Clearly, incor-
porating any new module can improve the FAA performance.
Combining all components achieves the best performance. In
particular, adding KD helps to learn new tasks, resulting in
a substantial increase in ALA. When the fusion operation
is further applied, ALA increases while the FRF decreases
or remains stable. The fusion with GWM rectifies students’
parameters, mitigating the impact of extreme noisy samples
and facilitating more stable convergence on new tasks. Finally,
adding GWMKD further enhances the accuracy. Moreover,
when memory capacity is very limited, the performance im-
provement is more significant, highlighting the benefit of our
approach under constrained conditions.

2) Hyper-parameter Sensitivity: To illustrate the effect of
the hyper-parameters A, v, and A, we have conducted ex-
periments utilizing ER as the baseline on CIFAR-100. We
evaluated the effect of each hyper-parameter individually,
keeping the other two constant.

Fig. @] (a) shows the influence of loss coefficient \ in Eq.
(). As X increases, the FAA gradually ascends to a peak.
After this point, the FAA remains relatively stable, even begins
to decrease slightly. This trend remains consistent for various
memory sizes. This indicates that moderate GWMKD between
GWM and students is beneficial. It guides the student models
towards old flatter, more generalizable solution, helping to
mitigate forgetting and improving overall performance. Other-
wise, excessively strong distillation causes students to blindly
mimic the GWM. This overly restricts their ability to explore
new tasks, ultimately resulting in a performance bottleneck.
Furthermore, it is noted that for smaller memory sizes, such
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(c) Influence of A with v = 0.5 and A searched in Fig (a), where
b and T in x-aixs are abbreviations for batch and task, respectively
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(d) Influence of EMA coefficient a.. According to these results, we
set a as 0.01 in all experiments

Fig. 4: Impact of A, 7, A, and « in ER+Ours on CIFAR-100 with varying memory sizes.

TABLE IV: FAA comparison of ER+Ours with various A on different datasets at 1K memory.

Datasets | 10b | 50b | 100b | 250b | 500b | 1000b | 1Task
CIFAR-100 (500 batches per task) 29.1+0.8 | 35.8+1.1 37.3+1.0 38.0+1.1 | 38.4 =+ 09 - 384 + o9
Tiny-ImageNet (100 batches per task) 12.8+0.8 | 15.6+0.7 | 15.6 £ o8 - - - 15.6 £ os
ImageNet-100 (1100 to 1300 batches per task) | 22.3+0.9 | 26.2+1.6 27.240.9 27.941.1 28.5+1.1 28.8+0.7 | 28.9 £ o7
as 0.2K and 0.5K, a larger A is required to compensate for 1.0

the lack of replay samples. This implies that when memory
samples are insufficient, stronger regularization is necessary to
assist the model in achieving optimal plasticity and stability
balance.

In Eq. (3), we use v and A to denote the proportion of
GWM and the interval of parameter fusion. Their influences
are given in Fig. ] (b) and (c), respectively. When ~y equals
0, the parameters of GWM are not fused back to students
(equivalent to baseline + KD + GWMKD). In other words, the
two students’ parameters are only restricted by aligning their
probability through the two KD losses. However, the parameter
trajectory of the two students will gradually diverge, leading
to ineffective construction of GWM. Thus, the performance
is the worst, reflecting the importance of the fusion operation
between GWM and students. With the increase of ~, the FRF
declines but the ALA firstly increases and then decreases
rapidly. In our opinion, too strong fusion will suppress the
adaptability of the model to new tasks. In a word, when
v equals 0.5, the model gets the best balance, achieving
optimal FAA while maintaining lower FRF and higher ALA.
Furthermore, Fig. 5] visualizes the cosine similarity of pa-
rameters between GWM and each student model, along with
the similarities between the two students. When parameter
fusion back is not applied (v = 0.0), the two student models
gradually diverge over time. Conversely, this divergence is
effectively reduced when GWM parameters are periodically
fused back into student models. For CIFAR-100 with 10 tasks,
the fusion interval A is chosen as 1 task, resulting in 10 peaks
in the v = 0.5 curve. These results indicate the importance of
our fusion operation again.

Gamma
— y=05
— =00
0.7 Model Pair

—— Modell-Model2
————— Modell-GWM
0.6] ——-= Model2-GWM

0 1000
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=)
o0
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Fig. 5: Comparison of parameter cosine similarity in ER+Ours
concerning parameter fusion application between GWM and
students on CIFAR-100 with 1K memory. Blue lines (y =
0.0) indicate an absence of parameter fusion while red lines
(v = 0.5) represent an average fusion between GWM and the
students.

The influence of fusion interval A is shown in Fig. E| (c).
Too small intervals, such as 10 batches, severely restrict the
model’s ability to explore new tasks, resulting in a consid-
erably reduced ALA. Raising A facilitates the acquisition
of new tasks, but it impacts stability, particularly for much
smaller memory. Due to the lack of sufficient memory samples
to retain old knowledge, the increase in forgetting is more
pronounced with smaller memory sizes, as illustrated by the
FRF curve at 0.2K memory. When the interval A is greater
than 250 batches, the overall FAA remains relatively stable.
On the other hand, the number of images differs across
datasets, leading to a varying number of batches for each
task. Specifically, CIFAR-100 and Tiny-ImageNet contain 500
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TABLE V: Comparison of the total running time (including both training time and inference time), GPU memory usage and
FAA on CIFAR-100 at 1K memory.

| Baseline | Baseline+CCL-DC [18] | Baseline+Ours

| Time(s) GPUMB) FAA(%) | Time(s) GPUMB) FAA(%) | Time(s) GPUMB) FAA(%)
ER [9] 181.27 296.99 14.3 638.10 1288.31 279 462.87 850.59 38.4
SCR [36] 234.54 392.64 18.4 745.52 1473.45 353 641.48 1226.71 37.0
ER-ACE [15] 192.91 296.00 22.3 868.47 1289.06 31.3 602.29 987.37 34.0
OCM [14] 934.50 2193.49 16.8 1907.11 4688.96 20.2 1845.09 4563.26 33.7
GSA [29] 382.78 385.48 23.8 851.73 1092.97 31.5 772.58 977.76 37.7
PCR [13] 305.70 377.02 29.3 779.52 1416.69 30.8 560.54 850.38 40.0
MLG [52] 371.13 398.67 28.5 1191.41 1616.60 32.5 809.73 1352.58 38.4
MOSE-MOE [28] 533.22 534.11 33.3 2297.89 1743.49 40.6 1985.36 1494.17 422

TABLE VI: Comparison of FAA derived from either the predicted probability of a single student or their average on CIFAR-100.

Method | Mg | 0.1K 0.2K 0.5K 1K 2K 5K

Student 1 21.6+1.3 27.7+0.9 34.3+1.0 38.3+1.0 41.8+1.3 43.6+1.3

ER+OQOurs Student 2 21.2+1.5 27.6+1.4 34.240.8 38.1+0.9 41.841.3 43.7+1.7

Mean 21.6 =14 28.0 09 345 ftos 384 to9 420 12 437 £ 16

Student 1 18.7+1.3 24.7+1.2 31.6+1.5 37.540.9 42.5+1.5 45.54+0.8

GSA+Ours | Student 2 18.8+1.4 24.7+1.4 31.9+1.5 37.6+0.8 42.5+1.6 45.7+0.5

Mean 188 £ 13 248 13 320 15 377 £o9 427 14 458 % 16

and 100 batches per task respectively, while ImageNet-100 3.0

includes 1100 to 1300 batches per task. According to Table 25 _ B E}:ﬁgg:l)c

we set A to 1 Task, obtaining the best performance across
all datasets.

Furthermore, Fig. ] (d) shows the influence of the EMA
coefficient v in Eq. (Z) of ER+Ours on CIFAR-100. It can be
observed that the value of « is vital in achieving an optimal
balance between model stability and plasticity. A smaller «
results in a slower update of the GWM, inadequately capturing
the present learning state. If « is too large, the GWM relies
heavily on the current students, compromising stability and
heightening noise sensitivity. An « value of 0.01 strikes the
best balance between preserving historical knowledge and
adapting to new tasks.

3) Computational Cost: Table [V] reports the total running
time (including both training and inference) and GPU memory
usage on CIFAR-100 at 1K memory. Both CCL-DC and our
approach utilize dual learners, resulting in a higher computa-
tional expense than the baselines. However, compared to CCL-
DC, we obtain much higher FAA accuracy with less running
time and GPU memory consumption.

4) Trade-off between Efficiency and Performance: In previ-
ous sections, we merged the outputs of two students to produce
the final prediction during inference. Although effective, this
ensemble technique requires more computational overhead. To
assess the ability of a single student, Table [V]] gives the FAA
achieved by an individual student as well as their average.
Clearly, employing just one student slightly reduces accuracy.
Nevertheless, when computational resources are extremely
limited, deploying just one student is a feasible choice.

5) Analysis of Feature Drift: Due to feature conflict, the
adjustment of parameters for acquiring a new task will cause
an excessive shift in the features for previously learned tasks.

Feature Drift
&

=

0.5

0.0

0 1000 2000

Iteration

3000 4000

Fig. 6: Comparison of feature drift of ER+CCL-DC and
ER+Ours on CIFAR-100 at 0.5K memory.

To measure this feature drift, we employ the feature distance
proposed in [15], [30]. Specifically, after the i-th iteration, we
compute || f(Xp1a; ©:) — f(Xoia; ©i—1)||2, where X4 stands
for memory images of old classes. Fig. [6] visualizes the feature
distance of ER+CCL-DC and ER+ours throughout the entire
training process. It is evident that our approach significantly
minimizes the feature drift, resulting in a smoother curve.

6) Model Generalization Analysis: Based on [54], we adopt
the flatness of the loss landscape for model generalization
analysis. Fig. [7) visualizes the loss landscape of four students in
CCL-DC and our method. For example, “Ours-S1" denotes the
loss of the first student within our approach. In this figure, we
employ the CE loss over all training samples of all learned
tasks, while the axes represent the model parameters after
PCA [55]]. Initially, all models are situated in the regions
with the lowest loss, denoted as red points. As more tasks
arrive, all models remain within basins, but the final loss
of CCL-DC is much larger than ours, indicating a better
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Fig. 7: Visualization of the loss landscape of students in CCL-
DC and our method on CIFAR-100 at 1K memory. The axes
depict the parameters after PCA while the dots symbolize the
models after each task. The arrows indicate the direction of
task processing. At Task 1, all models find their lowest loss at
the red dots. As more tasks arrive, although all students reside
in basins, the loss of our model stays almost constant.

generation of our model. Additionally, both students in our
model consistently converge into the same basin, whereas
CCL-DC exhibits significant divergence.

V. CONCLUSION

This study enhances ensemble learning by developing a
Global Workspace Model (GWM) for OCIL. The overall
framework consists of several student models and a GWM.
By employing periodic parameter fusion, the GWM guides
the students’ learning process. Additionally, a Multi-level
Collaborative Distillation strategy is devised to enforce peer-
to-peer consistency between students and preserve historical
knowledge. Extensive experiments on three popular OCIL
benchmarks demonstrate the effectiveness of our method in
enhancing stability while maintaining plasticity, resulting in
notable improvements in overall performance. In the future, we
plan to explore an increased number of heterogeneous collabo-
rative learners to better simulate the competition-coordination
dynamics suggested in cognitive systems. Additionally, we
intend to enhance competitiveness by crafting effective data
augmentation strategies that expand the range of student in-
puts, thereby boosting learning robustness and generalization.
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