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Abstract—Change detection(CD) is an essential field in remote
sensing, with a primary focus on identifying areas of change
in bitemporal image pairs captured at varying intervals of
the same region. The data annotation process for CD tasks is
both time-consuming and labor-intensive. To better utilize the
scarce labeled data and abundant unlabeled data, we introduce
an adaptive semi-supervised learning method, AdaSemiCD, to
improve pseudo-label usage and optimize the training process.
Initially, due to the extreme class imbalance inherent in CD, the
model is more inclined to focus on the background class, and it
is easy to confuse the boundary of the target object. Considering
these two points, we develop a measurable evaluation metric for
pseudo-labels that enhances the representation of information
entropy by class rebalancing and amplification of ambiguous
areas, assigning greater weights to prospective change objects.
Subsequently, to enhance the reliability of samplewise pseudo-
labels, we introduce the AdaFusion module, to dynamically iden-
tifying the most uncertain region and substituting it with more
trustworthy content. Lastly, to ensure better training stability, we
introduce the AdaEMA module, which updates the teacher model
using only batches of trusted samples. Experimental results on
ten public CD datasets validate the efficacy and generalizability
of our proposed adaptive training framework.

Index Terms—Pseudo label, Semi-supervised Learning, Change
Detection, Mean Teacher, Adaptive Learning

I. INTRODUCTION

CHANGE detection (CD) has emerged as a significant
research focus within the field of remote sensing. Its

objective is to identify regions of interest that have experienced
alterations in bi-temporal image pairs captured at varying times
of the same geographical area. This method plays a crucial role
in remote sensing data analysis and is particularly important in
various civilian sectors, such as urban planning [1], [2], rural
land management [3], [4], and disaster assessment [5], [6].

Given that the process of accurately annotating masks
for change detection tasks is notably labor-intensive, direct
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application of traditional supervised learning approaches, such
as convolutional neural networks (CNN) [7], [8] and Trans-
formers [9], [10], to a limited set of labeled data often results
in limited performance. In response to these challenges, re-
searchers have explored a range of approaches such as weakly
supervised change detection (WSCD) [11], [12], unsupervised
change detection (USCD) [13], [14], and semi-supervised
change detection (SSCD) [15], [16]. Although WSCD is cost-
efficient, it relies on incomplete or inaccurate labels, which can
introduce significant errors and unpredictable noise. USCD, on
the other hand, does not require labeled data and leverages
the intrinsic patterns present in the data; however, it often
faces challenges when tackling specific tasks like classification
or detection. Some methods would adopt sample generation
strategies [17]–[20], which include data augmentation [19],
generative adversarial networks (GAN) [18], and diffusion
models [20], frequently necessitate the simulation or synthesis
of additional data. However, when dealing with limited avail-
able samples, these methods may encounter constraints due to
insufficient diversity in the generated data, which can diminish
the model’s ability to generalize. As a result, SSCD [21]–[23]
emerges as a potentially more effective solution. The paradigm
of semi-supervised learning (SSL) [24]–[26] aims to enhance
CD performance by leveraging the limited available labeled
data and the large volume of unlabeled samples. Typically,
researchers generate pseudo-labels for the unlabeled data to
act as guidance during training. These pseudo-labels are often
temporary predictions with higher probabilities. The most
widely used approach is the mean-teacher (MT) [27] frame-
work, which employs a teacher model to generate pseudo-
labels that serve as guidance for the student model during the
training process. The teacher model is subsequently updated
using the exponential moving average (EMA) [28] of the
student model. The student model benefits from training on
a mix of limited labeled data along with ample pseudo-
labeled data, enabling it to identify more important features
and resulting in marked enhancements in performance.

While these methods produce acceptable outcomes, signif-
icant problems persist: the model indiscriminately treats all
samples, irrespective of their quality, and the training process
lacks flexibility. Firstly, it is evident that unlabeled sam-
ples may not always function as efficient ‘teachers’. Models
frequently encounter difficulties in generating reliable high-
quality pseudo-labels for intricate samples, which in turn
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introduces extra noise that can mislead the model’s training.
Subsequently, the EMA updating process does not take into
account the quality of samples. Given that training batches
may be biased or contain noise [29], dynamically determining
the timing of training updates could contribute to the stability
of the training process. These factors underscore the need for
a more precise supervisory approach, failing which it could
negatively impact the model’s training.

In this study, we introduce an adaptive learning strategy,
AdaSemiCD, designed to improve the accuracy of pseudo-
labels and streamline the training process. Our framework
builds upon the traditional semi-supervised training approach,
augmented by two innovative functional modules, AdaFusion
and AdaEMA. Initially, AdaFusion is employed to suppress
noise at the individual sample level, thereby enhancing the
accuracy of pseudo-labels. Contrary to previous methods like
Augseg [30] or CutMix [31] that relied on entirely random
fusion regions, our AdaFusion technique proactively identifies
the most uncertain region and substitutes them with reliable
content from either labeled datasets or unlabeled datasets
of superior quality. Following this, we dynamically adjust
the rate of parameter updates in the teacher-student model
via AdaEMA to ensure improved stability. Although the
traditional EMA effectively mitigates fluctuations in model
parameters, thereby boosting stability, it persists in uniformly
updating after each training iteration, neglecting the model’s
varying learning outcomes across different iterations when
handling a range of training samples. If unlabeled samples
contain excessive erroneous information, it can misdirect
the model’s training. Therefore, our AdaEMA introduces an
adaptive selection process for model-level parameter updates,
allowing the model to fully integrate superior parameters.

The main contributions of this paper are as follows:
• We propose an adaptive SSCD framework named

AdaSemiCD, which dynamically improves the pseudo-
labels as well as adjusts the training procedure with
pseudo label quality assessment.

• We propose an AdaFusion strategy to enhance unreliable
unlabeled samples. The fusion region and the trusted
contents are selectively chosen with the uncertainty map.

• We propose an AdaEMA parameter update strategy,
which updates the teacher model with a batch-wise
pseudo-labels improving assessment.

• Experimental results on ten publicly available datasets
demonstrate the effectiveness of our method.

II. RELATED WORK

A. Semi-supervised Learning

Semi-supervised learning involves applying supervised
learning on a limited amount of labeled data while employing
unsupervised learning on a vast set of unlabeled data. SSL
is typically divided into three strategies: consistent regulariza-
tion (CR), self-training, and holistic methods, with the latter
integrating the first two strategies within an SSL framework.

CR techniques are grounded in the concept of perturbed
consistency, which utilizes the coherence between the model’s
output after varying degrees of perturbed input data as a

training constraint. The three typical consistent regulariza-
tion frameworks consist of the Π-model [32], the Temporal-
ensembling model [32], and the mean-teacher model [28].
The Π-model’s double-branch network shares the weight; the
Temporal-ensembling model amalgamates all the outputs in
the time series, with each image’s pseudo-labels being the
EMA of the previously generated results; the MT model
carries out this smoothing operation at the model parameters
level. This model has found application in subsequent semi-
supervised research across various domains, such as Active-
Teacher for semi-supervised object detection [33], [34]–[36]
for semi-supervised general semantic segmentation, [37] for
image classification, and [38], [39] for semi-supervised med-
ical image segmentation. There has also been explored in the
area of perturbation design, with [40] and [21] examining the
image-level and feature-level perturbation of CR respectively.

In the realm of self-training methods, the authenticity
of pseudo-labels is of paramount importance. This has led
to extensive research into the effective selection of high-
quality pseudo-labels for supervised learning. Feng et al.
[41] proposed a method that incrementally adds labeled
instances, reduces class bias via Synthetic minority over-
sampling technique, and adaptively selects the optimal number
of instances to enhance classifier performance. [42] employs
a set probability threshold as a selection standard. ST++ [43]
has developed a multi-tier self-training structure, where labels
of high confidence are used for self-training repeatedly until
all unlabeled samples have been utilized. [44] uses a constant
entropy value as the filtering limit.

CR and self-training are commonly employed together
rather than in isolation, creating a holistic strategy for semi-
supervised learning. This is illustrated in [30], [34], [36], [37]
and [43], as partially described in previous sections.

B. Semi-supervised Change Detection

Since annotating a large number of images for CD is time-
consuming, recent methods mainly focus on the SSCD. In the
realm of CR techniques, the incorporation of the mean-teacher
model in CD was first introduced by Bousias et al. [45].
However, the initial outcomes did not show considerable
potential, as this SSCD method fell short when compared to
a benchmark that exclusively used a restricted quantity of la-
beled data for entirely supervised learning. Despite increasing
labeled data, this disparity continues to expand. Using this
as a basis, Mao et al. [46] implemented minor and major
improvements to the inputs of the teacher and student models,
respectively. Furthermore, they formulated an extra teacher-
virtual adversararial training component to further reduce the
harmful effects of the pseudo label noise.

Additionally, other semi-supervised methods employ either
a single model or a two-branch model with shared weights.
Such as Sun et al. [47] introduce a siamese network. They
incorporated additional self-training based on pseudo-labels,
employing threshold filtering to eliminate low-quality pseudo-
labels. The rationale behind this filtering lies in the potential
noise introduced by pseudo-labels with low confidence, which
could adversely affect SSL training. Hafner et al. [48] propose
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a dual-task SSCD framework that combines building segmen-
tation and change detection, two closely related downstream
tasks. They devised a novel consistency constraint between
the two change detection masks produced by the siamese
segmentation network and the CD network. Bandara et al. [21]
explored feature-based perturbations of the regularization
term, applying various data perturbations at the feature level
to expand the distribution space of consistency constraints.
This approach fully leverages the information embedded in
unlabeled samples. In recent work, Zhang et al. [23] imposed
two constraints of class consistency and feature consistency
on unlabeled datasets. By aligning the feature representations
of unlabeled samples on varying and invariant classes, the
model could learn from a feature space that is closer to the
real distribution, this contributed to the renewal of the best
performance record at that time.

Some approaches primarily employ generative adversarial
networks to produce data samples and understand feature
distributions that approximate real labeled data [22], [49],
[50]. Although these efforts have shown notable achievements
in SSCD, the notoriously erratic nature of GAN training
presents difficulties with hyperparameter tuning. Furthermore,
the occurrence of gradient vanishing is a common challenge
during training. Moreover, the discriminator’s robust ability to
differentiate can cause an imbalance between the generator and
discriminator’s performance within the GAN unless additional
training strategies are applied. As a result, reaching an ideal
balance is demanding, complicating the practical application
of this method. Therefore, we continue the semi-supervised
framework leveraging consistency and self-training techniques.

III. METHODOLOGY

Fig. 1 provides a comprehensive summary of our
AdaSemiCD framework, aiming to enhance the SSCD perfor-
mance by leveraging scarce labeled data and a vast quantity of
unlabeled samples. We commence with a general introduction
of the framework, followed by an detailed explanation of the
uncertainty map used to assess our pseudo-labels, and finally
present the specifics of AdaFusion and AdaEMA.

A. Overview of the AdaSemiCD Framework

The process of semi-supervised change detection is broadly
outlined as follows: We are given a labeled dataset, denoted
as Dl =

{
{xl

a,i, x
l
b,i} , yli

}m

i=1
, and an unlabeled dataset

Du =
{
xu
a,j , x

u
b,j

}n

j=1
. Here,

{
{xl

a,i, x
l
b,i} , yli

}
illustrates the

i-th pair of labeled images alongside their corresponding true
labels, while {xu

a,j , x
u
b,j} refers to the j-th pair of unla-

beled images. The subscript a signifies the image from the
‘Pre’-event period, and b signifies the ‘Post’-event period.
Importantly, the quantity of samples with labels and those
without are m and n, with n considerably larger than m.
The aim is for model M to not only derive key insights
from Dl but also to enhance its feature extraction capability
using the extensive collection of unlabeled samples in Du,
thus boosting the model’s generalization potential. Ordinarily,
samples are subject to either weak augmentation Aw(·) or

strong augmentation As(·) prior to being passed into the
network to guarantee superior generalization performance.

Model architecture: In this study, we employ the widely
used MT framework for SSCD tasks. Two integral parts make
up the network: a student model, denoted as Mstu, and a
teacher model, represented as Mtea. Both components possess
an identical architecture. The student model is trained to
extract significant features from a small number of labeled
samples and a large volume of unlabeled samples, with the
aid of optimization via gradient descent methods. Conversely,
the teacher model Mtea generates pseudo-labels to guide the
student in assimilating unlabeled data, and it is updated using
the EMA method.

Objectives: The objective is to minimize the supervised
loss Ls on Dl while ensuring consistency on the disturbed
Du with a minimal Lu. During training, samples are fed into
the network in randomly shuffled batches, Bl and Bu.

The loss Ls for labeled samples within a batch Bl is
calculated as the cross entropy(CE) of ground truth yli and
its prediction pli:

Ls =
1

|Bl|

|Bl|∑
i=1

CE
(
pli, y

l
i

)
, (1)

where |Bl| represents the mini-batch size, pli represents the
change detection result for the i-th pair of images.

The loss Lu for unlabeled samples within a batch Bu is
quite similar. Here, we use the pseudo-labels from Mtea to
supervise the predictions from Mstu. The loss Lu is calculated
as follows:

Lu =
1

|Bu|

|Bu|∑
j=1

CE
(
pus,j , p

u
w,j

)
, (2)

where |Bu| represents the size of the unlabeled image mini-
batch. puw,j = Mθ

tea(w
u
a,j , w

u
b,j) and pus,j = Mθ

stu(s
u
a,j , s

u
b,j)

denote the change detection outcomes from the teacher model
for the j-th pair of weak and strong augmentations of unla-
beled images, respectively.

To summarize, the overall loss associated with the
AdaSemiCD training process is defined as:

L = Ls + λ(·)Lu. (3)

λ is the weight of unsupervised loss, which is typically set to
a constant value [37], [38]. For SSCD, we contend that using
a constant λ could potentially disrupt the training procedure.
In the early stages of training, the pseudo-labels for unlabeled
data tend to be highly unreliable, and excessive dependence
on unsupervised training at this point can inject substantial
noise. Conversely, as training progresses into the intermediate
and final phases, the model enhances its ability to generate
high-quality pseudo labels, diminishing the importance of
the limited labeled dataset. This shift warrants a gradual
decrease in the emphasis on supervised training compared to
unsupervised training over time. To prevent overfitting and
refine the feature space, it is crucial to have a systematic
approach that dynamically modifies the balance between these
two elements in the loss function. We employ a ramp-up
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Fig. 1. The overview of the proposed AdaSemiCD framework and details of two adaptive modules. Our approach is based on the common MT training
pipeline for SSCD, and we suggest utilizing the AdaFusion module to produce samples with increased reliability and the AdaEMA module to enhance the
efficiency of EMA update.

approach, defining λ(·) as a function that adapts through the
course of training, thereby dynamically modulating the bal-
ance between supervised and unsupervised training throughout
various phases.

λ(·) = wmax × e−ϕ×(1−itercur/itermax)
2

(4)

itermax = γ × itertotal (5)

Here, wmax represents the maximum weight value of the
unsupervised loss, and ϕ controls the severity of the ramp-
up. itercur represents the current iteration cycles; itermax is
the total number of ramp-up cycles, calculated by multiplying
γ (where 0 < γ < 1) by the total number of training iterations,
as shown in 5. After the ramp-up process, the weight of the
unsupervised loss stabilizes at wmax and no longer changes.
In the early stages of training, this weight is relatively low, so
unsupervised training plays a negligible role, but in the middle
and later stages of training, this weight gradually increases and
the unsupervised loss after weighting exceeds the supervised
loss, making unsupervised training the dominant factor.

Training strategy: To reduce the total loss L, the param-
eters of the student network, denoted as θstu, are refined via
Stochastic Gradient Descent (SGD). Concurrently, the teacher
network updates its parameters θtea using an exponential mov-
ing average calculated from the student network’s parameters
θstu over a time sequence:

θtea = βθtea + (1− β)θstu (6)

The hyperparameter β acts as a momentum factor, where a
higher β value leads to a broader moving average window.
Generally, β is selected to be near 1.0; in this study, for
instance, β is set at 0.996.

Proposed modules: The effectiveness of semi-supervised
learning depends largely on the quality of pseudo-labels. Nev-
ertheless, it is clear that the previously mentioned procedure
does not take into account the varying impact of individual
samples on training. This paper concentrates on two critical
aspects that are directly related to the generation of pseudo-
labels: the initial pair of unlabeled images, and the efficiency
of the pseudo-label-generation network, aka the teacher model,
in identifying changes. To offer more reliable supervisory
signals to unlabeled information and reduce training uncer-
tainty, we propose an adaptive training strategy to tackle
these two key issues. Our initial proposal is to develop a
metric that quantifies the uncertainty of pseudo-labels, serving
as the basis for adaptive modifications. Following that, we
recommend applying adaptive modifications at the image level
to the unlabeled training samples and suitably integrating
reliable contents. Additionally, we apply adaptive and selective
EMA updates to the teacher network during the training
phase to minimize variations, ensuring more consistent and
higher-quality pseudo-labels. The details of these methods are
discussed in the following sections.

B. Pseudo-label Qualification Metric

To enhance the effectiveness of pseudo-labels by accurately
gauging their quality, a crucial step is the implementation
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Fig. 2. Class statistics of common CD datasets. The proportion of the
changed/unchanged categories is extremely unbalanced.

of an evaluation metric. This metric plays a key role in
identifying reliable labels and determining the value of each
training sample. Unlike labeled image pairs, where true labels
serve as a benchmark for assessing the model’s performance,
pseudo-labels lack such reference points and can only be
compared to themselves. To evaluate the quality of pseudo-
labels, a common technique is the computation of information
entropy [51],

E(xi) = −P (xi) log2 P (xi) , (7)

where P (xi) is the output probability of a trained model on
sample xi. We propose that reduced information entropy in the
predicted values implies greater reliability of the prediction. In
contrast, increased information entropy points to a prediction
with more uncertainty, indicating a more balanced probabil-
ity distribution across the pixels and resulting in decreased
confidence in the model’s predictions.

In the CD task, directly applying entropy may not yield
the optimal results due to the significant challenge posed by
class imbalance, as illustrated in Fig. 2. The ratios of changed
to unchanged categories are highly skewed. This imbalance
may lead our model to learn the target categories inadequately
during training while disproportionately capturing feature dis-
tributions from the background categories. As a result, the
model tends to classify pixels as background during inference.
To reduce the influence of this class imbalance when assessing
the quality of pseudo-labels, we assign different weights to the
two categories when computing information entropy,

E′ (X) = w1 × E (xi) [0] + w0 × E (xi) [1], (8)

where w0 and w1 represent the proportions of pixels in the
current batch that belong to the unchanged and changed
categories, respectively. The formulas for their calculation are:

w0 =

∑|Bu|
i=1

∑H×W
k=1 (P (xi) == 0)

|Bu| ×H ×W
(9)

w1 =

∑|Bu|
i=1

∑H×W
k=1 (P (xi) == 1)

|Bu| ×H ×W
(10)

Furthermore, pixels from different regions play distinct
roles. Pixels that are more crucial, like those found on
edges, targets, or areas resembling the background—frequently
predicted with higher uncertainty—should be prioritized. To

achieve this, we start by enhancing the significance of these
key regions by calculating the absolute difference between the
prediction probabilities of the two classes,

D (xi) = abs(P (xi) [1]− P (xi) [0]) (11)

In this context, abs represents the absolute value function,
employed to prevent inconsistencies that could occur due to
differing changes before and after a phase. By carrying out
a pixel-wise multiplication with the information entropy, we
derive the uncertainty map for the image xi,

U (xi) = 1−D (xi) · E′ (xi) (12)

In areas characterized by low information entropy, this pro-
cedure is unlikely to cause significant changes. However,
in regions where information entropy is high, the operation
enhances the effect.

To summarize, aiming to assess the quality of pseudo-labels
in change detection, we propose a quantifiable metric U to
evaluate uncertainty. This metric improves overall information
entropy by considering elements such as class imbalance and
regions of confusion.

C. AdaFusion: Adaptive Sample Fusion

Image fusion is widely used to augment samples and
enhance generalization, with CutMix [31] and MixUp [52]
being typical examples. In this study, our aim is to apply image
fusion techniques to exclude unreliable areas from the training
samples. This process consists of two steps: region selection,
which determines the location for the operation, and image
selection, which specifies the content to be used.

Adaptive selection of fusion region. Contrary to the con-
ventional CutMix technique, which arbitrarily selects blending
regions, our approach is more refined. First, we initialize a
bounding box of random size, then slide the window to identify
the area with the highest total uncertainty using Eq. (12), as the
region to be fused. These regions typically include boundaries
or complex areas where target identification is difficult. The
selection approach guarantees a varied sample and, at the same
time, decreases unsupervised noise.

Adaptive selection of fusion contents. For the region
of maximum uncertainty, we can select a substitute from
either the corresponding samples in the labeled set Bl or the
unlabeled set Bu with higher reliability. This strategy helps
prevent overreliance on labeled samples and further mitigates
the risk of overfitting. The selection of fusion content is guided
by an adaptive threshold that determines whether to fuse with a
labeled image pair. We directly use the computed uncertainty
as the threshold, and if the randomly generated probability
exceeds the total uncertainty of the sample, labeled images in
the training batch are selected as the fusion content. Otherwise,
other unlabeled image pairs of higher quality are chosen. It is
clear that the higher the reliability of a sample, the better the
quality of the pseudo-label. If a sample is considered reliable
enough, we avoid fusing it with limited labeled images, which
could increase the risk of overfitting. Samples with higher
uncertainty contain more noise, and incorporating new content
is expected to reduce the noise effectively.
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D. AdaEMA: Adaptive EMA Update Strategy

Within the MT framework, the teacher model’s update pro-
cess involves incorporating the student’s exponential moving
average over time. Our goal is to reach a state of optimal
coevolution, where the teacher acts as an aggregate reflection
of the student model’s progress. A pivotal factor in this
coevolution is whether the student model advances or declines
with each update of the teacher. Evaluating the student model’s
state is closely tied to the training process’s validation phase.
Typically, after several training epochs, we evaluate the model
by using samples from the validation set, performing inference,
and comparing the output against true labels to determine ac-
curacy. Conducting this validation after every iteration incurs
a significant computational cost and extends training duration.
One may address this by reducing the validation set size to
just a few pairs; however, this risks insufficiently assessing
model performance if the sample is too small. The challenge
lies in striking a balance between these considerations.

During each training phase, we commence by updating the
student model, denoted as Mθ

stu, according to the strategy
outlined in section III-A, which results in the updated model
Mθ′

stu. Subsequently, we assess both the modified student
model, Mθ′

stu, and the teacher model, Mθ
tea on the current set of

unlabeled training samples, Bu. Using Eq. (12), we calculate
the corresponding uncertainty maps, referred to as Utea and
Ustu. The changes in the student model’s development are
captured through fluctuations in uncertainty,

ε =

∑
Ustu −

∑
Utea

|Bu|
. (13)

Additionally, we introduce a probability τ to regulate model
updates according to the reliability of the student model,
defined as

τ =

{
1

iter2+ϵ , ε ≤ 0

1.0 , ε > 0
, (14)

Here, iter denotes the current iteration count and ϵ = 1e− 5.
When ε is greater than zero, the student model progresses,
allowing a straightforward update of Mθ

tea. In contrast, if ε
is zero or less, the student model encounters either regression
or fluctuation. To gauge the probability of altering Mθ

tea, we
incorporate some randomness. The adaptive updating details
are provided in Algorithm 1.

IV. EXPERIMENT

A. Experimental Setup

1) Datasets: Our method is empirically tested on ten
benchmark datasets, namely the LEVIR-CD [53], LEVIR-
CD+ [53], WHU-CD [54], EGY-CD [55], HRCUS-CD [56],
CDD [57], GZ-CD [22], DSIFN-CD [58], SYSU-CD [59],
and CL-CD [60]. As summarized in Table I, these datasets
cover different resolutions (0.03m-2.0m), different data sizes
(1-20000 pairs), different annotation categories (binary or
multiclass), and different time spans (2-16 years). Fig. 3 shows
some classic sample images for each dataset.

We employ an identical configuration across all datasets,
using 5%, 10%, 20%, and 40% as the proportions of labeled

Algorithm 1 The AdaEMA algorithm.
Input:

Student model Mθ
stu, Teacher model Mθ

tea

The set of training samples for the current batch, B =
{Bl,Bu}

Output:
Updated Teacher model, Mθ′

tea;

1: Calculate the supervised loss Ls on labeled samples Bl

using Eq. (1);
2: Calculate the unsupervised loss Lu on unlabeled samples

Bu using Eq. (2);
3: Update the student model Mθ

stu to Mθ′

stu using SGD to
minimize the total loss, as described in Eq. (3).

4: Calculate the uncertainty Utea of the pseudo-labels gen-
erated on Bu by the teacher model Mθ

tea as described in
Eq. (12);

5: Calculate the uncertainty Ustu of the pseudo-labels gener-
ated on Bu by updated student model Mθ′

stu as described
in Eq. (12);

6: Calculate the upper bound of the update probability τ
according to Eq. (13) and Eq. (14);

7: if random(·) < τ then
8: Update the teacher model to Mθ′

tea by EMA;
9: else

10: Mθ′

tea = Mθ
tea;

11: end if
12: return Mθ′

tea.

samples. For LEVIR-CD and WHU-CD, we adopted the semi-
supervised partitioning as described in [21]–[23]. For the
remaining eight datasets, we utilized random partitioning.

2) Evaluation Metrics: For easy comparison with the most
advanced techniques, we utilized overall accuracy (OA) to
assess general performance. Due to the significant imbalance
in CD categories and our main focus on the altered area, we
applied the intersection over union for the changed category
IoU c. The calculation formulas are provided below:

IoU c = TP/(TP + FP + FN) (15)

OA = (TP + TN)/(TP + FP + FN + TN) (16)

Where TP represents the positive sample correctly predicted
(the correct changing pixel), TN refers to the negative sample
correctly predicted (the correct unchanged pixel), and FP
denotes the positive sample wrongly predicted (the unchanged
pixel wrongly detected), FN represents the negative sample
wrongly predicted (the pixel missed as the unchanged pixel).
For both metrics, the larger the value, the better the change
detection performance of the model.

3) Implementation Details: We employ ResNet50+PPM as
our change detection framework, as referenced in [21] and
[23]. The learning rate starts at 0.01 and decreases linearly to
1e-4, with momentum kept at 0.9. Training of all competing
approaches is conducted using the SGD optimizer over 80
epochs. For both labeled and unlabeled data, the mini-batch
size is set at 8. Moreover, the augmentations applied are the
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Fig. 3. Typical examples of ten change detection datasets we use, with Pre-event image, Post-event image, and Ground Truth.

TABLE I
TEN PUBLICLY AVAILABLE CHANGE DETECTION DATASETS USED IN THE EXPERIMENT.

Category Datesets Spatial Resolution Size Annotated Samples Time Spans Download

LEVIR-CD [53] 0.5m 1024 × 1024 637 5 to 14 years Link
LEVIR-CD+ [53] 0.5m 1024 × 1024 985 5 to 14 years Link

WHU-CD [54] 0.2m 15354×32507 1 2012 to 2016 Link
GZ-CD [22] 0.55m Varying 19 2006 to 2019 Link

EGY-BCD [55] 0.25m 256 × 256 6091 2015 to 2022 Link
Binary

HRCUS-CD [56] 0.5m 256 × 256 11388 Varing Link

CDD [57] 0.03m-1.0m 256 × 256 16000 Varing Link
DSIFN-CD [58] Unknown 512 × 512 3940 Unknown Link
SYSU-CD [59] 0.5m 256 × 256 20000 2007 to 2014 LinkMulticlass

CL-CD [60] 0.5-2.0m 512 × 512 600 2017 to 2019 Link

same as those in FPA [23], which consist of weak augmenta-
tions such as random flip, random resizing from 0.5 to 2.0, and
random cropping, along with nine robust augmentations [61].
A pseudo label threshold of 0.95 is adopted for all models
in our studies. When calculating loss, ϕ is fixed at 5. The
entire set of experiments was executed using PyTorch on four
NVIDIA GeForce RTX 3090 GPUs.

B. Compare with the SOTA Methods

To demonstrate the advantages of our proposed method, we
have conducted a comparison with a number of leading semi-
supervised change detection techniques [21]–[23], [35], [62].

1) Quantitative Results: Tables II and III display our ex-
perimental outcomes for both the Building CD datasets and
the multi-class CD datasets. The ‘Sup. only’ results denote
supervised training outcomes from a restricted portion of the
labeled dataset, whereas ‘Oracle’ represents full supervision
results using the entire training dataset. It’s notable that our

approach achieves SOTA performance in nearly every partition
configuration across these datasets. Remarkably, in most sce-
narios, all semi-supervised CD approaches outperformed the
supervised ones within the same partition setting, confirming
the efficacy of semi-supervised methods in leveraging numer-
ous unlabeled training samples. Additionally, the superiority of
our method highlights the practical importance of our adaptive
strategy for learning more effectively from unlabeled data.

Building CD Datasets: As presented in Table II, the
proposed AdaSemiCD framework demonstrates outstanding
performance across nearly all building CD datasets. No-
tably, on LEVIR-CD, LEVIR-CD+, and WHU-CD datasets,
AdaSemiCD achieves a significant improvement in IoU c, with
gains of 3.1, 1.3, and 1.7 percentage points, respectively. On
EGY-CD and HRCUS-CD datasets, AdaSemiCD maintains an
overall leading position with average improvements of 0.75
and 0.4 points, respectively. However, performance on certain
configurations is marginally lower than SOTA methods. This

https://justchenhao.github.io/LEVIR/
https://justchenhao.github.io/LEVIR/
http://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery
https://github.com/oshholail/EGY-BCD
https://github.com/zjd1836/AERNet
https://drive.google.com/uc?id=0B-IG2NONFdciOWY5QkQ3OUgwejQ&export=download
https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images/tree/master/dataset
https://github.com/liumency/SYSU-CD
https://github.com/liumency/CropLand-CD
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limitation can be attributed to the unique challenges posed
by these datasets: the EGY-CD dataset suffers from overex-
posure, which often blends buildings with the background,
increasing the difficulty of accurate discrimination. Similarly,
the HRCUS-CD dataset is affected by vegetation occluding the
changing areas of some buildings. These challenges hinder the
model’s ability to generate reliable pseudo-labels when trained
with a limited number of real labels.

It is evident that AdaSemiCD encounters notable challenges
on the GZ-CD dataset, underperforming compared to the FPA
method across most experimental configurations, except for
maintaining a lead in the 5% labeled datasets. We attribute this
to both the dataset’s intrinsic characteristics and the inherent
limitations of our approach. Firstly, the GZ-CD dataset has
the lowest spatial resolution among the datasets evaluated.
This limitation, coupled with the prevalence of small buildings,
results in objects that are difficult to discern visually at such
resolutions, even for human observers. Secondly, the manual
annotations of this dataset are notably coarse, likely due to
these resolution constraints. For regions with multiple targets,
annotators often delineated broad areas that encompass signif-
icant portions of the background, as illustrated in Fig. 3. This
introduces substantial noise in the labeled data, especially for
building change detection tasks. Lastly, the dataset’s suburban
setting introduces additional challenges. Urban development
and expansion over the dataset’s temporal span of over five
years result in dramatic differences between the two images,
beyond the annotated building change areas. These varia-
tions in the background—often so significant that it becomes
difficult to ascertain whether the images correspond to the
same location—introduce strong non-interesting changes that
interfere with the model’s ability to focus on the relevant
change areas. However, unlike AdaSemiCD, FPA and RCR do
not rely solely on one-hot hard label. Instead, they leverage
consistency constraints at the feature level, which effectively
mitigates this issue to a significant extent.

Furthermore, as indicated by the experimental results, the
overall accuracy of all methods on these binary change detec-
tion datasets is notably high, primarily due to the dominance
of the background class. OA often correlates closely with
IoU c, where even a slight improvement in OA translates into a
relatively significant improvement in IoU c. Our AdaSemiCD
consistently enhances OA across nearly all datasets, as it
effectively reduces noise and minimizes the influence of false
signals, leading to more accurate predictions.

Multiclass CD Datasets: As shown in Table III, our
proposed AdaSemiCD demonstrates optimal performance in
the majority of scenarios, despite the increased complexity
of multi-category change detection tasks compared to binary
building change detection tasks. Notably, optimal results were
achieved across all experimental settings on the CDD dataset,
with IoU c and OA increasing by an average of 1.8 percentage
points and 0.25 percentage points respectively, which can
be attributed to its exceptionally accurate annotations, as
illustrated in Fig. 3. This high-quality labeling is particularly
advantageous for pseudo-label-based semi-supervised meth-
ods. Furthermore, AdaSemiCD exhibits overall performance
improvements on the SYSU-CD and CL-CD datasets. How-

TABLE II
THE AVERAGE QUANTITATIVE METRICS OF DIFFERENT CD METHODS ON
BUILDING CHANGE DETECTION DATASETS. THE HIGHLIGHTED PARTS IN

BLUE ARE THE BEST RESULTS, AND THE UNDERLINED ONES ARE THE
SECOND BEST RESULTS.

Dataset Method
5% 10% 20% 40%

IoUc OA IoUc OA IoUc OA IoUc OA

LEVIR-CD

Sup. only 61.0 97.60 66.8 98.13 72.3 98.44 74.9 98.60
AdvEnt [62] 66.1 98.08 72.3 98.45 74.6 98.58 75.0 98.60
s4GAN [35] 64.0 97.89 67.0 98.11 73.4 98.51 75.4 98.62
SemiCDNet [22] 67.6 98.17 71.5 98.42 74.3 98.58 75.5 98.63
RCR [21] 72.5 98.47 75.5 98.63 76.2 98.68 77.2 98.72
FPA [23] 73.7 98.57 76.6 98.72 77.4 98.75 77.0 98.74
AdaSemiCD 77.7 98.78 79.4 98.87 80.3 98.92 80.6 98.93
Oracle IoUc=77.9 and OA=98.77

LEVIR-CD+

Sup. only 52.0 97.72 58.4 98.06 66.1 98.31 66.2 98.42
AdvEnt [62] 52.2 97.68 59.9 98.11 65.9 98.37 68.0 98.51
s4GAN [35] 46.5 97.25 51.4 97.66 62.8 98.18 67.2 98.46
SemiCDNet [22] 52.6 97.66 60.7 98.24 64.8 98.37 66.1 98.38
RCR [21] 64.9 98.25 67.5 98.45 68.5 98.52 68.4 98.51
FPA [23] 64.6 98.30 67.3 98.40 70.3 98.64 69.0 98.59
AdaSemiCD 66.7 98.49 68.8 98.51 70.6 98.63 70.9 98.64
Oracle IoUc=70.5 and OA=98.63

WHU-CD

Sup. only 50.0 97.48 55.7 97.53 65.4 98.20 76.1 98.94
AdvEnt [62] 55.1 97.90 61.6 98.11 73.8 98.80 76.6 98.94
s4GAN [35] 18.3 96.69 62.6 98.15 70.8 98.60 76.4 98.96
SemiCDNet [22] 51.7 97.71 62.0 98.16 66.7 98.28 75.9 98.93
RCR [21] 65.8 98.37 68.1 98.47 74.8 98.84 77.2 98.96
FPA [23] 66.3 98.45 57.4 97.69 62.5 98.48 73.1 98.69
AdaSemiCD 67.8 98.62 70.8 98.70 74.7 98.86 79.6 99.13
Oracle IoUc=85.5 and OA=99.38

GZ-CD

Sup. only 47.5 93.56 51.4 94.26 58.0 95.65 66.3 96.62
AdvEnt [62] 48.6 94.39 50.9 94.89 60.2 95.79 66.2 96.58
s4GAN [35] 50.8 94.38 52.4 94.98 60.8 95.94 64.2 96.39
SemiCDNet [22] 48.4 93.58 49.7 94.79 59.0 95.66 66.3 96.57
RCR [21] 50.8 93.82 50.8 94.69 62.5 96.07 67.8 96.61
FPA [23] 51.2 93.92 58.9 95.78 63.1 96.26 68.2 96.82
AdaSemiCD 51.6 94.56 57.1 95.57 62.4 96.21 68.0 96.75
Oracle IoUc=69.0 and OA=96.93

EGY-CD

Sup. only 49.8 95.73 54.6 96.38 61.4 96.83 65.1 97.25
AdvEnt [62] 52.7 96.01 57.8 96.58 62.6 96.86 64.0 97.19
s4GAN [35] 52.9 95.94 58.6 96.50 64.7 97.09 64.9 97.27
SemiCDNet [22] 52.4 96.00 57.9 96.31 62.8 96.95 63.8 97.19
RCR [21] 58.1 96.50 59.9 96.77 63.9 97.08 64.2 97.18
FPA [23] 57.5 96.52 60.1 96.86 65.2 97.25 65.7 97.34
AdaSemiCD 59.0 96.55 60.5 96.80 65.0 97.20 67.4 97.39
Oracle IoUc=67.6 and OA=97.54

HRCUS-CD

Sup. only 29.5 98.11 36.0 98.45 43.4 98.68 48.9 98.84
AdvEnt [62] 29.1 98.11 36.9 98.40 42.5 98.61 48.8 98.71
s4GAN [35] 25.0 97.86 28.2 98.24 40.1 98.62 50.3 98.85
SemiCDNet [22] 28.4 98.00 34.7 98.44 44.1 98.68 48.5 98.74
RCR [21] 36.1 98.36 42.1 98.69 45.3 98.76 49.6 98.66
FPA [23] 35.2 98.37 43.7 98.65 46.7 98.82 51.2 98.81
AdaSemiCD 37.8 98.59 42.6 98.70 48.1 98.84 50.8 98.87
Oracle IoUc=59.0 and OA=99.06

ever, its performance is slightly below the SOTA results in
certain experimental configurations. This can be attributed to
the inherent challenges in identifying some mountain and land
changes present in these datasets. These changes are often
large-scale, and misclassification in such regions may result
in fluctuations in performance metrics.

An additional significant observation is that, when the
overall accuracy declines, the correlation between OA and
IoU c becomes less straightforward. In particular, there are
instances where IoU c reaches its maximum value, while OA
does not, underscoring their different focuses. OA is mainly
concerned with overall accuracy, highlighting the detection of
background categories, whereas IoU c prioritizes the precise
detection of target classes, which is more vital for change
detection tasks than identifying background categories. This
difference is apparent in the DSIFN-CD dataset, where our
method demonstrates strong performance on the IoU c metric.

Among the evaluated datasets, our method demonstrates the
poorest performance on DSIFN-CD. While it performs well on
the critical IoU c metric, its performance on OA is suboptimal.
This can be attributed to similarities between DSIFN-CD
and GZ-CD, as both datasets suffer from coarse manual
annotations and low spatial resolution, as evident in Fig. 3.
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TABLE III
THE AVERAGE QUANTITATIVE METRICS OF DIFFERENT CD METHODS ON
MULTICLASS CHANGE DETECTION DATASETS. THE HIGHLIGHTED PARTS
IN BLUE ARE THE BEST RESULTS, AND THE UNDERLINED ONES ARE THE

SECOND BEST RESULTS.

Dataset Method
5% 10% 20% 40%

IoUc OA IoUc OA IoUc OA IoUc OA

CDD-CD

Sup. only 60.4 94.25 67.9 95.46 75.6 96.59 82.3 97.56
AdvEnt [62] 63.3 94.65 71.2 96.01 79.3 97.14 82.9 97.66
s4GAN [35] 62.3 94.69 71.0 95.94 79.0 97.10 82.8 97.63
SemiCDNet [22] 63.5 94.68 71.2 95.99 79.1 97.13 82.8 97.63
RCR [21] 67.6 95.40 75.5 96.57 80.2 97.26 82.7 97.61
FPA [23] 68.9 95.66 74.9 96.55 79.7 97.20 81.1 97.37
AdaSemiCD 70.1 95.89 77.3 96.89 82.1 97.56 83.9 97.80
Oracle IoUc=87.8 and OA=98.10

DSIFN-CD

Sup. only 34.8 78.34 38.9 83.41 40.2 87.00 39.6 87.00
AdvEnt [62] 31.8 77.83 36.3 83.86 40.8 85.92 37.4 86.31
s4GAN [35] 36.6 84.10 34.8 86.87 37.9 87.69 40.1 86.52
SemiCDNet [22] 33.6 78.60 37.9 84.18 39.1 86.77 39.1 87.05
RCR [21] 26.7 83.78 32.9 86.05 40.8 86.70 36.7 86.08
FPA [23] 39.2 84.27 38.5 87.12 36.0 87.41 35.8 86.50
AdaSemiCD 36.9 80.46 39.2 82.94 41.1 85.45 45.1 87.12
Oracle IoUc=58.1 and OA=90.82

SYSU-CD

Sup. only 62.9 89.57 64.4 90.18 66.0 90.82 66.4 90.93
AdvEnt [62] 61.2 89.36 64.5 90.18 65.7 90.35 68.3 91.24
s4GAN [35] 64.4 90.02 66.5 90.48 66.9 90.26 68.2 91.51
SemiCDNet [22] 61.7 89.32 64.8 90.25 66.7 90.97 67.0 91.08
RCR [21] 62.5 89.76 66.0 90.75 64.1 90.22 65.3 90.56
FPA [23] 67.7 90.95 68.3 91.09 70.1 92.01 69.3 91.97
AdaSemiCD 67.5 91.16 68.7 91.59 70.1 92.03 69.9 91.90
Oracle IoUc=68.2 and OA=91.64

CL-CD

Sup. only 18.1 91.90 31.4 92.42 37.2 93.32 45.9 94.98
AdvEnt [62] 24.3 92.13 33.2 93.01 37.6 93.59 42.9 94.06
s4GAN [35] 22.1 92.00 26.6 93.09 37.4 93.59 43.4 93.87
SemiCDNet [22] 24.0 92.20 28.3 93.42 36.2 92.41 45.3 94.22
RCR [21] 27.1 91.63 32.8 92.99 36.4 93.07 48.5 94.94
FPA [23] 29.0 91.00 38.2 93.37 39.6 93.88 43.1 94.15
AdaSemiCD 30.6 92.52 33.5 92.40 41.6 94.21 49.1 95.85
Oracle IoUc=50.1 and OA=95.66

Moreover, DSIFN-CD exhibits only a slight degree of class
imbalance, with the proportion of change classes reaching
as high as 34.81%. Consequently, the category rebalancing
strategy we designed has limited effectiveness, leading to the
misclassification of many background pixels. This, in turn,
contributes to the observed reduction in OA.

2) Qualitative Results: Fig. 4 and Fig. 5 showcase some
examples of the visualizations on the test sets of building
and mutilclass CD datasets respectively, in which the area
selected in the box is the error-prone area. It is apparent that on
those datasets, our approach has notably mitigated the common
issues of missed and false detections. In challenging scenarios,
our method could still effectively identify the areas of change
that were of interest to us.

Some failure cases of the detected changes are unrelated to
the buildings of interest. The absence of adequate supervision
information makes it challenging to mitigate such interference,
leading to decreased model performance. Additionally, the task
is further complicated by the detection of small and densely
changing areas, which proves to be difficult for the model.

In complex scenarios, alternative semi-supervised models
may encounter guidance issues, leading them to inadvertently
amplify errors during training. As a result, semi-supervised
methods may perform worse than supervised methods trained
exclusively on labeled data in such situations. Our model,
however, adaptively mitigates these noises during the training
phase by dynamically excluding them and integrating parame-
ters from a progressively refined model throughout the training
process. In these intricate cases, the quality of pseudo-labels
is incrementally improved until they reach a reliable standard,
thereby providing an accurate signal for model training. Con-
sequently, our model demonstrates superior performance in

these challenging regions, as highlighted by the boxes in Fig.
4 and Fig. 5. This adaptive approach forms the cornerstone of
our proposed method.

C. Ablation Study

Effectiveness of proposed modules: Due to the differences
in model architecture between the current semi-supervised
change detection methods referred to and ours, we did not
rush to verify the superiority of our method at first. Instead,
we conducted model architecture experiments first, using the
classical Mean-Teacher architecture. In addition to setting
hyperparameters for it to control the weight of unsupervised
losses, the rest of the data augmentations and CD network
remained the same as [23] and [21]. The gain of this semi-
supervised framework compared with the single model and the
two-branch network with shared weights is very obvious, and
it can almost approach the previous optimal performance. This
also demonstrates the validity of the principle of perturbed
consistency and the parameter integration, on the basis of
which we explore the adaptive training mechanism. There-
fore, we separately integrated our proposed AdaEMA and
AdaFusion into the MT framework and achieved average
improvement of 1.2 and 5.1 on IoU c respectively, as shown
in Table IV. * in the table indicates that in adapt, an adaptive
judgment operation is performed to determine whether the
fusion is performed, and a random selection strategy is used
when selecting the fusion region, and a huge gap between
the two is evident. Finally, the two adaptive modules contain
the complete method, and better results are obtained on the
basis of individual modules, which shows that the two modules
proposed by us are decoupled, and the model architecture is
reasonable.

Pseudo-label qualification metric: As described in Section
III-B, the pseudo-label evaluation metric we proposed is based
on information entropy, enhanced by class rebalancing and
confusion region amplification. To demonstrate the effective-
ness, we first evaluated our AdaSemiCD using information en-
tropy as the sole metric, then incrementally incorporated class
rebalancing and confusion region amplification, and finally
evaluated the full model, which integrates all components.

The experimental results are presented in Table V. When
only information entropy is used as the evaluation metric
for implementing the adaptive training mechanism, significant
performance improvements are achieved, attributed to the
AdaFusion and AdaEMA modules we designed. Incorpo-
rating class rebalancing and confusion region amplification
based on information entropy further enhances performance,
demonstrating that these improvements enable more accurate
identification of pseudo-labels during training, thereby facil-
itating more precise adaptive operations. Notably, the gain
from class rebalancing exceeds that from confusion region
amplification. This is because, with class rebalancing, the
evaluation of pseudo labels places greater emphasis on the
foreground, somewhat neglecting background identification,
thus allowing AdaFusion to focus more on the uncertainty
region in the foreground. In addition, confusion region ampli-
fication proves more beneficial as more labeled data becomes
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Fig. 4. Visualizations of different models on six building change detection datasets at the 5% labeled training ratio.

available. Finally, using uncertainty, an overall assessment that
includes both components, leads to further performance gains,
suggesting that these two improvements are independent and
can be effectively combined for more accurate assessments.

We have stored the pseudo-labels generated during the
training process, and Fig. 6 illustrates the IoU c between the
pseudo-labels and the corresponding Ground Truth through-
out training, both with and without class rebalancing in the
pseudo-label evaluation (note: the Ground Truth used here for
unlabeled samples are solely for calculating the IoU c with
the pseudo-labels and are not involved in any other aspect
of the training process). It is evident that, although class

rebalancing does not directly improve the pseudo-labels, it
enables a more accurate evaluation of the pseudo-labels. As a
result, our adaptive training mechanism enhances the quality
of them, bringing them closer to the real labels, which leads
to a higher IoU c between them.

D. Complexity Analysis

Since we utilize the same architecture with FPA and RCR,
the number of training parameters (46.85M) and computational
amount (585.85 GFLOPs) were the same. The variations in
parameters, FLOPs, and the time required for training and
inference are presented in Table VII. Our AdaSemiCD is
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Fig. 5. Visualizations of different models on four mutil-class change detection datasets at the 5% labeled training ratio.

TABLE IV
ABLATION STUDY OF OUR PROPOSED ADASEMICD ON LEVIR-CD DATASET. AEMA AND AF DENOTES OUR ADAEMA, ADAFUSION MODULE

RESPECTIVELY. AND AF* REPRESENTS THE FUSION REGION ARE RANDOMLY SELECTED.

Method
5% 10% 20% 40%

IoUc OA IoUc OA IoUc OA IoUc OA

Sup. only 61.0 97.60 66.8 98.13 72.3 98.44 74.9 98.60
MT-EMA 67.1 (+6.1) 98.14 (+0.54) 75.0 (+8.2) 98.63 (+0.50) 76.6 (+4.3) 98.71 (+0.27) 77.0 (+2.1) 98.73 (+0.13)
MT-AEMA 68.9 (+7.9) 98.23 (+0.63) 76.1 (+9.3) 98.66 (+0.53) 77.7 (+5.4) 98.78 (+0.34) 77.8 (+2.9) 98.78 (+0.18)
(MT-EMA)+AF* 72.0 (+11.0) 98.43 (+0.83) 76.8 (+10.0) 98.72 (+0.59) 77.5 (+5.2) 98.74 (+0.30) 78.5 (+3.6) 98.80 (+0.20)
(MT-EMA)+AF 77.0 (+16.0) 98.72 (+1.12) 78.8 (+12.0) 98.83 (+0.70) 80.4 (+8.1) 98.91 (+0.47) 80.0 (+5.1) 98.90 (+0.30)
AdaSemiCD 77.7 (+16.7) 98.78 (+1.18) 79.4 (+12.6) 98.87 (+0.74) 80.3 (+8.0) 98.92 (+0.48) 80.6 (+5.7) 98.93 (+0.33)

Fig. 6. The influence of class rebalancing on the quality of pseudo-labels
generated for unlabeled samples during training.

comparable to other methods with reference count, FLOPs,
and inference time. The main reason for the longer training
time was that it took about 0.3s for each iteration to generate
and evaluate pseudo-labels twice, while it only took about
0.006s and 0.03s for fusion and EMA parameters updating,
respectively. Moreover, our model balances performance and
time consumption, offering a notable performance benefit with
only a slight increase in time. Hyperparameters in Ramp-
up: The Ramp-up process has a significant influence on the
performance of our AdaSemiCD on SSCD. Therefore, we
conduct experiments on the selection of two hyperparameters
(γ and wmax) that control the Ramp-up process. As shown
in Table VI, our method achieves the best performance on
the three datasets under the combination of parameters (0.1,
10), (0.1, 0.1), and (0.1, 1.0) respectively. Moreover, our
method is sensitive to this hyperparameter, and inappropriate
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TABLE V
ABLATION STUDY OF PSEUDO-LABEL QUALIFICATION METRIC ON LEVIR-CD DATASET.

Method
5% 10% 20% 40%

IoUc OA IoUc OA IoUc OA IoUc OA

Sup. only 61.0 97.60 66.8 98.13 72.3 98.44 74.9 98.60
Entropy 73.2 (+12.2) 98.50 (+0.90) 77.4 (+10.6) 98.75 (+0.62) 78.6 (+6.3) 98.81 (+0.37) 79.2 (+4.3) 98.89 (+0.29)
Entropy+rebalance 76.0 (+15.0) 98.63 (+1.03) 78.7 (+11.9) 98.82 (+0.69) 79.6 (+7.3) 98.85 (+0.41) 79.6 (+4.7) 98.86 (+0.26)
Entropy+confusion 74.6 (+13.6) 98.61 (+1.01) 78.0 (+11.2) 98.79 (+0.66) 79.2 (+6.9) 98.82 (+0.38) 79.8 (+4.9) 98.87 (+0.27)
Uncertainty 77.7 (+16.7) 98.78 (+1.18) 79.4 (+12.6) 98.87 (+0.74) 80.3 (+8.0) 98.92 (+0.48) 80.6 (+5.7) 98.93 (+0.33)

TABLE VI
SENSITIVITY ANALYSIS OF RAMP-UP HYPERPARAMETERS WITH 10%

LABELED DATA ON THE LEVIR-CD, WHU-CD, AND CDD DATASETS.

γ wmax
LEVIR-CD WHU-CD CDD

IoUc OA IoUc OA IoUc OA

0 0 66.8 98.13 55.7 97.53 67.9 95.46
0.05 1.0 67.2 98.17 53.8 97.02 74.4 96.35
0.1 1.0 71.8 98.32 61.0 98.10 77.3 96.89
0.3 1.0 69.9 98.26 59.4 98.03 76.2 96.56
0.5 1.0 68.7 98.15 60.9 98.25 76.3 96.58
1.0 1.0 67.3 98.13 60.5 98.18 72.3 95.98
0.1 0.1 65.2 97.60 70.8 98.70 71.6 95.77
0.1 0.5 68.3 98.14 66.9 98.54 75.8 96.67
0.1 5.0 73.9 98.75 60.1 98.00 69.1 95.51
0.1 10.0 79.4 98.87 52.4 97.40 68.2 95.50
0.1 30.0 71.9 98.42 50.34 97.12 65.4 95.20

TABLE VII
COMPARISON OF PARAMETERS, COMPUTING COMPLEXITY,
AND TRAINING TIME OF DIFFERENT SSCD METHODS ON 5%

LABELED LEVIR-CD DATASET.

Method Params(M) FLOPs(G) Training
Time(s)

Inference
Time(ms) IoUc

Sup.Only 46.85 585.85 77 56 61.0
AdvEnt [62] 46.85 585.85 405 63 66.1
s4GAN [35] 46.85 585.85 585 58 64.0
SemiCDNet [22] 46.85 585.85 408 75 67.6
RCR [21] 46.85 585.85 742 59 72.5
FPA [23] 46.85 585.85 727 68 73.7
AdaSemiCD 46.85 585.85 915 67 77.7
Oracle 46.85 585.85 293 55 77.9

parameter selection will cause large performance attenuation.
This is because our method conducts supervised training
on labeled samples and unsupervised training on unlabeled
samples at the same time. If the relationship between the two
cannot be properly balanced, overfitting on labeled samples
or excessive noise interference from unlabeled samples will
be caused. All of our remaining experiments were performed
at this hyperparameter setting, and the hyperparameters of the
compared methods were consistent with the best choices in
their original paper.

V. CONCLUSION

In this study, we present AdaSemiCD, a flexible semi-
supervised framework for change detection. This framework
assesses the quality of pseudo-labels on unlabeled training
samples and implements adaptive modifications based on the
assessment outcomes, which include sample fusion (AdaFu-
sion), and parameter updates (AdaEMA). Despite the complex-
ity of the scenes, our model successfully identifies the areas of
interest with minimal interference during training. Empirical
evidence from ten publicly available CD datasets attests to
the efficacy of our methodology. Looking ahead, this adaptive

processing technique holds promise for potential application
in other semi-supervised tasks.
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