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Abstract

The task of translating visible-to-infrared images (V2IR)
is inherently challenging due to three main obstacles: 1)
achieving semantic-aware translation, 2) managing the di-
verse wavelength spectrum in infrared imagery, and 3) the
scarcity of comprehensive infrared datasets. Current lead-
ing methods tend to treat V2IR as a conventional image-
to-image synthesis challenge, often overlooking these spe-
cific issues. To address this, we introduce DiffV2IR, a novel
framework for image translation comprising two key ele-
ments: a Progressive Learning Module (PLM) and a Vision-
Language Understanding Module (VLUM). PLM features
an adaptive diffusion model architecture that leverages
multi-stage knowledge learning to infrared transition from
full-range to target wavelength. To improve V2IR transla-
tion, VLUM incorporates unified Vision-Language Under-
standing. We also collected a large infrared dataset, IR-
500K, which includes 500,000 infrared images compiled
by various scenes and objects under various environmental
conditions. Through the combination of PLM, VLUM, and
the extensive IR-500K dataset, Diff V2IR markedly improves
the performance of V2IR. Experiments validate DiffV2IR’s
excellence in producing high-quality translations, estab-
lishing its efficacy and broad applicability. The code,
dataset, and DiffV2IR model will be available at https :
//github.com/LidongWang—26/DiffV2IR.

1. Introduction

Visible images are the most common form of digital im-
agery, while infrared images hold significant importance
in various practical applications, such as thermal imag-
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Figure 1. Main challenges of V2IR. (a) Semantic-aware transla-
tion, in which the context information of shadow influences the
infrared image a lot. (b) Diverse infrared radiations. Even similar
visual scenes from different infrared cameras show the diversity of
infrared imagery. For the second column to the fourth column, the
infrared intensity significantly changes.

ing, night vision monitoring, and environmental sensor data
analysis. Currently, lots of foundation visual models are
built on annotated large visible datasets. An intuitive way
to narrow the gap between visual models and infrared mod-
els is to translate visual images into infrared images (V2IR).

However, V2IR presents a difficult task due to three criti-
cal challenges. First, V2IR is highly dependent on semantic
information. Infrared imaging, also known as thermal imag-
ing, captures and visualizes the infrared radiation emitted
by objects. Therefore, V2IR relies on scene understanding
such as object semantics and context information (e.g., solar
radiation, lighting, and shadow). Second, infrared imaging
primarily relies on infrared radiation, which is typically di-
vided into several different wavelength ranges such as Near-
Infrared (NIR), Short-Wave Infrared (SWIR), Mid-Wave
Infrared (MWIR), and Long-Wave Infrared (LWIR). Differ-
ent infrared radiation intensity leads to various pixel values
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for the same scene. Images captured in the same wavelength
range might still vary due to differences in infrared camera
sensors. Third, unlike visual images that can be easily cap-
tured by anyone with widely-used phones and traditional
cameras, infrared images are limited to a few people who
have infrared cameras. Therefore, there are only a few pub-
lic infrared datasets captured by different types of infrared
camera. It is unclear how to train a large foundation model
of infrared image generation on limited datasets.

Existing methods make initial attempts at V2IR. A com-
mon way is to directly formulate the V2IR task as image-
to-image translation, with methods such as Variational Au-
toencoders (VAEs) [21, 30, 53], Generative Adversarial
Networks (GANSs) [2, 23, 37], and diffusion models [17,
54, 55]. To exploit semantic information (Challenge 1) and
reduce the impact of diverse infrared radiation from differ-
ent infrared cameras (Challenge 2), these methods integrate
different low-level semantics into image-to-image transla-
tion models, such as edge prior, structural similarity, geom-
etry information, and physical constraint. For example, In-
fraGAN [48] uses structural similarity as an additional loss
function and a pixel-level discriminator. EG-GAN [33, 40]
focused on edge preservation. DR-AVIT [14] achieved di-
verse and realistic aerial visible-to-infrared image transla-
tion by integrating a geometry-consistency constraint. TM-
GAN [42] incorporates the image-matching process into
image-to-image translation. PID [43] incorporated strong
physical constraints and used a latent diffusion model. Al-
though these methods significantly improve V2IR, they do
not make full use of semantics and do not consider different
infrared radiation from different infrared cameras.

To tackle the challenges of V2IR, in this paper, we
present Diff V2IR, a novel V2IR diffusion framework that
integrates vision-language understanding into a diffusion
model with multi-stage knowledge learning.  Specifi-
cally, to achieve semantic-aware V2IR translation, we ex-
tract a detailed scene description by integrating a Vision-
Language Understanding Module (VLUM) into the opti-
mization (Challenge 1). To achieve stable V2IR translation
trained on the datasets that contain different infrared radia-
tion from different infrared cameras, we propose a Progres-
sive Learning Module (PLM) that features an adaptive dif-
fusion model architecture that leverages multi-stage knowl-
edge learning to transition from full-range to target wave-
length (Challenge 2). To train a large-scale V2IR diffusion
model, we assembled an extensive infrared dataset named
IR-500K, comprising 500,000 infrared images. The IR-
500K integrates nearly every substantial publicly accessible
infrared dataset. This fusion of scale, diversity, and acces-
sibility establishes the dataset as a pivotal resource for en-
hancing infrared image generation technologies(Challenge
3). With DiffV2IR and IR-500K, our work significantly im-
proves the performance of V2IR.

Overall, the main contributions are: 1) We propose a
novel DiffV2IR framework that integrates a multi-modal
vision-language model into a unified optimization and thus
achieves semantic-aware V2IR translation. 2) To enable
DiffV2IR to perform stable V2IR translation on an infrared
dataset with various infrared radiation, we propose a pro-
gressive learning module that leverages multi-stage knowl-
edge learning. 3) To train a large Diff V2IR model, we col-
lect a large infrared dataset, IR-500K. Experiments demon-
strate the effectiveness of DiffV2IR.

2. Related Works

Diffusion Models. Recently, diffusion models such as
those in [47, 56, 69] have made significant strides in im-
age generation. Acting as generative systems, these mod-
els emulate physical diffusion processes by gradually intro-
ducing noise to learn how to produce clear images. Unlike
traditional generative models like GANs [12, 39, 44] and
VAE:s [30, 53], diffusion models generate superior-quality
samples for high-resolution image creation and provide a
training process less prone to mode collapse. The concept
of diffusion models was first presented in [55]. DDPMs [17]
proposed denoising diffusion probabilistic models, which
captured significant attention and broadened the applica-
tion of diffusion models in image generation. Efforts have
since been aimed at enhancing their efficiency and produc-
tion quality. Latent diffusion models (LDMs) [54] executed
the diffusion process in a compressed latent space, greatly
reducing computational overhead. These models have ex-
celled in image generation and denoising. However, they
remain underutilized in multispectral image translation.

Image-to-Image Translation. Image translation al-
gorithms are designed to learn either a pixel-wise corre-
spondence or a joint probability distribution to facilitate
the translation of images from one domain to another.
Pix2Pix [24], a foundational work in the field, utilizes a
conditional generative adversarial network (cGAN) [45] to
develop a pixel-level map between input and output images.
Expanding on this, Pix2PixHD [63] explores techniques for
producing high-resolution images of superior quality. These
methods require paired images for training. Introducing a
different approach, CycleGAN [74], DiscoGAN [29] and
DualGAN [70] utilizes unpaired datasets by implementing
a cycle consistency loss, which guarantees that the mapping
from source to target and back to source retains the original
content. Then many models like [3, 6, 7, 65, 67] ultilize cy-
cle consistency for unpaired training. [20, 34, 62] assume
that the representation can be disentangled into domain-
invariant semantic structure features and domain-specific
style features. [1, 27, 28, 59] implement attention mech-
anism in image translation.

With the rapid advancement of diffusion models, a va-
riety of conditional diffusion models that incorporate text



and spatial information have achieved notable success in
image translation [5, 8, 11, 35, 61, 66]. InstructPix2Pix [4]
employs two large pre-trained models (GPT-3 and Stable
Diffusion) to generate an extensive dataset of input-goal-
instruction triplet examples and trains a model for image
editing based on instructions using this dataset. Control-
Net [73] and T2I-Adapter [46] are devoted to making the
diffusion process more controllable by introducing various
conditions. Although many methods achieve great success
in image translation, they do not consider the challenges of
V2IR, which heavily depends on scene understanding.

Visible-to-Infrared Image Translation. Several mod-
els have attempted to translate visible images to infrared
images. Initially, some research focused on generating in-
frared data tailored for specific tasks like tracking [72] and
person re-identification [32], treating it mainly as a pixel
generation challenge. Content structure serves as a cru-
cial prior in producing meaningful infrared images. Infra-
GAN [48] incorporates structural similarity as an auxiliary
loss and uses a pixel-level discriminator for V2IR image
translation. EG-GAN [33, 40] highlights edge preserva-
tion as an effective approach, confirmed by improved out-
comes in training deep TIR optical flow and object detection
against other benchmarks. VQ-InfraTrans [57] introduces a
two-step transfer strategy using a composite encoder and
decoder from VQ-GAN [9], alongside a multi-path trans-
former. DR-AVIT [14] enhances the translation of aerial
visible-to-infrared images with disengaged representation
learning, separating image representations into a domain-
invariant semantic structure space and two domain-specific
imaging style spaces. PID [43] further advances this area
by integrating significant physical constraints and for the
first time employing a latent diffusion model. However, cur-
rent V2IR methods do not fully exploit key semantic infor-
mation and struggle to create high-quality infrared images
since various infrared imaging.

3. Methodology

In this paper, we propose a Diff V2IR framework based on
diffusion models, which can translate visible images into in-
frared images (V2IR). Different from large-scale visual im-
age datasets that can easily collected by widely-used phones
and RGB cameras, it is difficult to collect diverse visual im-
ages in various scenes with limited infrared cameras. To
address this problem, we collect a large-scale dataset by
combining almost all publicly available infrared datasets
(Section 4). However, different infrared cameras might pro-
cess diverse wavelength spectrums, leading to various in-
frared images. We design a progressive learning method to
learn multi-stage infrared knowledge (Section 3.3). Since
the V2IR translation is highly dependent on semantic infor-
mation (object semantics and context information), we de-
sign a semantic-aware V2IR translation module via vision-

language understanding (Section 3.4).

3.1. Preliminary

Diffusion models are a family of probabilistic generative
models that progressively destruct data by injecting noise,
then learn to reverse this process for sample generation.
DDPMs [17] are probabilistic generative model leveraging
two Markov chains. The first Markov chain progressively
injects noise into the data to transform data distribution into
standard Gaussian distribution, while the other stepwise re-
verses the process of noise injection, generating data sam-
ples from Gaussian noise. LDMs [54] significantly reduce
resource demand by operating in the latent space, especially
dealing with high-resolution images. LDMs mainly consists
of an autoencoder with an encoder £ and a decoder D and
a denoising U-Net ¢y9. Given an image x, LDMs first en-
code it into latent space and then add noise to the encoded
latent z = £(z) producing a noisy latent z;, where ¢ de-
notes diffusing time step. For conditional diffusion models,
condition c is introduced into the denoising process. The
denoising U-Net ¢y is trained by minimizing the following
objective:

L= ES(ac),c,sNN(O,l),t ”6 — €0 (Ztatvc)Hg] ) (1)

where LDMs aim to predict the noise added on the encoded
latent z at ¢ timesteps under the condition c.

3.2. Overview of DiffV2IR

The pipeline of our DiffV2IR is illustrated in Figure 2.
DiffV2IR mainly consists of two components, i.e., Progres-
sive Learning Module (PLM) and Vision-Language Under-
standing Module (VLUM). Specifically, 1) as for PLM, we
first establish foundational knowledge of infrared imaging
properties utilizing our collected IR-500K dataset. Then
we use visible-infrared image pairs to learn cross-modal
transformation and finally conduct the refinement on the
specific infrared imaging style. 2) as for VLUM, we in-
corporate unified vision-language understanding, including
detailed language descriptions and segmentation maps, to
make DiffV2IR semantic-aware and structure-preserving.

3.3. Visible-to-Infrared Diffusion Model via Pro-
gressive Learning

We employ the IR-500K Dataset, as described in Section 4,
to train a conditional diffusion model aimed at converting
visible images into infrared ones. Typically, fine-tuning dif-
fusion models from a pre-trained checkpoint yields better
results than training a diffusion model from scratch. Con-
sequently, our model is constructed upon Stable Diffusion
(SD), a pre-trained latent diffusion model with text condi-
tioning [54], to leverage its extensive expertise in the do-
main of text-to-image translation.
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Figure 2. Framework overview of our Diff V2IR. DiffV2IR mainly consists of two components, i.e., Progressive Learning Module (PLM)
and Vision-Language Understanding Module (VLUM). We use PLM for multi-stage knowledge learning and VLUM for semantic pre-
serving in the V2IR task. The three U-Nets from bottom to top respectively denote the infrared representation internalization phase, the
cross-modal transformation learning phase, and stylization refinement phase of PLM. The VLUM is introduced during PLM to make

Diff V2IR semantic-aware.

Although pre-trained diffusion models are capable of
generating high-quality visible images based on textual
prompts, we observed that their performance degrades
when the prompt includes the term “infrared.” This indi-
cates a generally poor comprehension of infrared modality
for most pre-trained diffusion models, with even less profi-
ciency in translating visible images to infrared ones. To ad-
dress this, we introduce PLM, a progressive learning strat-
egy. This approach firstly enables the diffusion model to
fill the gap between infrared modality and visual modality,
then develops its capability of performing general visible-
to-infrared image translation, and finally allows it to gener-
ate infrared images in a specified style.

Phase #1: infrared representation internalization,
which aims to establish foundational knowledge of infrared
imaging properties. This is the initial phase in our progres-
sive learning strategy designed to integrate infrared knowl-
edge. We achieve this by fine-tuning a stable diffusion
model using Low-Rank Adaptation (LoRA) [19] on IR-
500K dataset, all prompted with the same phrase, “an in-
frared image”. Throughout this tuning process, the weights
of the pre-trained model remain fixed, while smaller train-
able rank decomposition matrices are inserted into the
model, enhancing training efficiency and minimizing over-
fitting risks. As a result of this progressive learning phase,
the diffusion model associates infrared characteristics with
the term “infrared”, enabling the generation of infrared-

style images from textual prompts, without losing other vi-
tal information.

Phase #2: cross-modal transformation learning,
which aims to map visible-to-infrared (V2IR) modality dif-
ferences through paired supervision. Then the dataset con-
sisting of about 70,000 visible-infrared image pairs is uti-
lized for diffusion model learning the mapping relationship
between visible and infrared images. Subsequent to this
stage, the model can generate images well consistent with
the characteristics of infrared modality under the guidance
of corresponding visible images. As the style of infrared
images is relevant to many factors such as wavelength range
and infrared camera sensors, the infrared images in our col-
lected dataset have a high diversity. This diversity strength-
ens the generalization capability of our model when facing
all kinds of visible images, which enables the model to serve
as a pre-trained model for visible-to-infrared image transla-
tion.

Phase #3: stylization refinement, which aims to adapt
infrared outputs to spatio-temporal variations and environ-
mental dynamics. Although the pre-trained model is now
capable of translating visible image into high-quality in-
frared one, the diversity of the training dataset makes it
hard to generate infrared images in a specific style. To com-
pensate for this shortcoming, we introduce the last training
phase of our proposed progressive learning using a small
dataset containing image pairs of visible images and in-



frared images in the desired style.

The diffusion model gradually advances through three
progressive stages of enhanced learning, ultimately evolv-
ing into a model proficient in style-controllable transforma-
tion from visible images to infrared images.

3.4. Semantic-aware V2IR Translation via Vision-
Language Understanding

V2IR is highly dependent on semantic information. In-
frared imaging captures and visualizes the infrared radia-
tion emitted by objects on the basis of their temperature and
radiant existance. Therefore, V2IR relies on scene under-
standing such as object semantics and context information
(e.g., solar radiation, lighting, and shadow). We integrate
VLUM into a unified optimization framework and thus
achieve semantic-aware V2IR translation. What’s more, we
also incorporate additional embeddings of the segmentation
map for better sturcture preserving.

To enhance the content awareness of the translation pro-
cess, we use Blip [36] to create vision-language embed-
dings derived from visible images. This vision-language
model provides a detailed description of key objects that
determine the existence of radiants, along with contextual
information such as weather, lighting, and other environ-
mental elements that influence temperature. We employ
a similar method to SD for text conditioning, utilizing a
CLIP-based text encoder [51] that takes text as input and
applies a cross-attention mechanism to incorporate the en-
coded tokens. Thanks to the robust text-image alignment
capability of the pre-trained stable diffusion model and the
internalization of infrared representation via the progres-
sive learning module, vision-language capabilities enable
DiffV2IR to comprehend the correspondences and distinc-
tions in cross-modality images more effectively. In addi-
tion, to maintain structural integrity in the translation pro-
cess, we add embeddings from the segmentation map gen-
erated by SAM [31], which have a rich knowledge of layout
and structure. We merge the conditioning from visible im-
ages and the segmentation map by concatenating them with
the noise map after latent encoding and by adding extra in-
put channels to the first convolutional layer of the denoising
U-Net. The weights of the newly introduced input channels
are initialized using zero initialization.

Moreover, the Classifier-free Guidance mechanism [16]
is utilized to enhance the controllability of generated images
using conditional inputs. This technique is often used in
conditional image generation to achieve a balance between
sample quality and diversity. In our approach, the score net-
work incorporates three types of conditioning: a visible im-
age cy, a segmentation map cg, and a vision-language cr.
During training, certain conditionings are randomly set to
none to allow unconditional training, with 2% of examples
varying from fully unconditioned to having only one con-

ditioning. To balance the control strength of the three con-
ditionings, we introduce the following guide scales: sy for
the visible image, sg for the segmentation map, and st for
vision-language. The score estimation is formulated as in
Eq. 2. Each conditioning is assigned a guidance scale to
adjust its intensity, resulting in a score estimate that com-
bines conditional and unconditional outputs with specific
weights.
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4. IR-500K Dataset

To achieve superior quality in visible-to-infrared image
translation, this research brings together nearly all large
publicly available datasets [10, 13,22, 25, 38,41, 50, 52, 58,
60], supplemented by some additional data sourced online.
The result is an extensive multi-wavelength database com-
prising 500,000 infrared images. These images represent a
wide range of scene types, diverse object categories, and
various camera perspectives, such as natural landscapes,
cityscapes, driving environments, aerial scene understand-
ing, and surveillance contexts. Each image is captured at a
high resolution, showcasing rich visual details, and is care-
fully chosen to meet the model’s learning needs. These im-
ages serve as essential components in the understanding of
infrared imaging, accompanied by the label text description
“An infrared image”.

Additionally, we selected 70,000 visible and infrared im-
age pairs specifically for precise training purposes, as these
pairs are crucial for accurately capturing the differences be-
tween the two spectra. These paired datasets undergo strict
alignment and segmentation processing to ensure that multi-
modal information can be co-learned effectively, enhancing
the cross-spectral translation performance. By integrating
multiple source datasets, we not only expand the training
data volume but also optimize data diversity and relevance
for the diffusion model, providing abundant and represen-
tative learning materials. With these high-quality large-
scale datasets, we believe that diffusion models can effec-
tively capture cross-spectral visual feature relationships, en-
abling efficient and accurate visible-to-infrared image trans-
lation tasks. The processing details of creating the IR-500K
dataset will be available at https://github.com/
LidongWang—-26/DiffV2IR.
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5. Experiments

5.1. Experimental Settings

Testing Dataset. All of our experimental evaluations are
performed using the M3FD dataset [38] and FLIR-aligned
dataset [71], both of which offer a rich array of scenes char-
acterized by diverse weather and lighting conditions. The
M?FD dataset includes a total of 4,200 precisely aligned
infrared and visible image pairs, each with dimensions of
1024 x 768, spread across over 10 different sub-scenarios.
It is important to note that images from the same scene tend
to be similar, which poses a risk of data leakage if these im-
ages are randomly splited as training and testing data. To
address this, we opt for a manual split of the M?3FD dataset,
creating a training set composed of 3,550 pairs and a test-
ing set containing 650 pairs, rather than relying on a random
division. The differences can be seen as shown in Table 1.
The FLIR-aligned dataset, derived from the original FLIR
dataset [10], is captured from a driving perspective and has
been meticulously aligned [71]. It consists of 5,142 im-
age pairs. However, because of differences in the receptive
fields between visible and infrared images, some visible im-
ages exhibit noticeable black borders. To improve the qual-
ity of the dataset, we refined to select 4,489 image pairs and
divided them into training (80%) and testing (20%) subsets.
Each image maintains a resolution of 640 x 512.

Table 1. Data leak affects model performance. Experiments con-
ducted on the identical M3FD dataset but with varying segmen-
tations exhibit significant discrepancies, suggesting that randomly
dividing the M®FD dataset might lead to data leakage.

Dataset ‘ FID|{ PSNRT SSID?
M3FD (randomly split) | 45.89  21.70  0.7196
M?3FD (manually split) | 70.29  19.30  0.6620

Visual Quality Assessment. We assess the quality of
translated images using established standard metrics, such
as Fréchet Inception Distance (FID) [15], Peak Signal-to-
Noise Ratio (PSNR) [18], and Structural Similarity Index
(SSIM) [64].

Implementation Details. The experiments in this study
were carried out on a system equipped with a NVIDIA
A800 GPU. Throughout training, images were first resized
to 286 x 286 and then randomly cropped to 256 x 256 to
enhance training speed and efficiency. For models provided
with a recommended configuration, the experiments were
executed under those specified settings. Our Diff V2IR and
models lacking recommended configurations were trained
for approximately 100 epochs to ensure proper conver-
gence. For techniques requiring text input, the same text
prompt from phase #3 of PLM training in our DiffV2IR
was supplied. For style transfer methods that require both

a style and content image, we randomly chose an infrared
image from the training set as the style reference and used
a visible image as the content to be translated.

5.2. Comparison with SOTA Methods

We evaluate our DiffV2IR model compared to fifteen
cutting-edge methods that have emerged in recent years,
many of which necessitate additional training before de-
ployment. These methods include GAN-based methods
such as Pix2Pix [24], CycleGAN [74], EGGAN-U [33, 40],
DR-AVIT[14], StegoGAN [65], UNSB [26] and meth-
ods based on diffusion models like InstructPix2Pix [4],
ControlNet [73], FCDiffusion [11], T2I-Adapter [46],
Pix2PixTurbo [49], PID [43], among others. In addition,
we also examine pre-trained models (CSGO [68]), training-
free approaches (StyleID [8]), and few-shot methods (OS-
ASIS [5]) for comparative analysis.

Quantitative Comparisons. Table 2 provides informa-
tion on the performance of V2IR translations.

On the M3FD dataset, Pix2Pix [24] stands out among
GAN-based approaches with the highest PSNR and SSIM,
signifying excellent pixel-level precision, though it also
records one of the worst FID scores. CycleGAN [74],
DR-AVIT [14], and UNSB [26] offer a more balanced
performance, yet their results remain unsatisfactory. Al-
though EGGAN-U [33, 40] achieves the second-best SSIM
among GAN methods, its overall performance along with
StegoGAN [65] is not commendable. Regarding diffusion
models, ControlNet [73] and T2I-Adapter [46] achieve im-
pressive PSNR and SSIM scores by transforming visible
images into feature maps for conditional guidance in the
denoising process, with T2I-Adapter [46] reaching a low
FID of 114.63. On the other hand, FCDiffusion [1 1] strug-
gles with input visible image structure preservation, show-
ing the worst SSIM. Methods like OSASIS [5], training-free
approaches such as StyleID [8], and the pre-trained CSGO
model [68] fail to deliver good metrics due to insufficient
training data and limited infrared understanding. PID [43],
another diffusion model for infrared generation, presents
reasonable PSNR and SSIM but suffers from a high FID. In
contrast, InstructPix2Pix [4] and Pix2PixTurbo [49] excel
with the second and third best metrics across all methods.

In contrast to the M3FD dataset, the FLIR-aligned
dataset presents a less complex scenario. GAN-based meth-
ods demonstrate improved outcomes over their performance
on the M3FD dataset, with Pix2Pix [24] achieving the high-
est PSNR among all methods. Nevertheless, the FID score
for Pix2Pix [24] remains significantly elevated. Similar to
their results on the M3FD dataset, CycleGAN [74] and DR-
AVIT [14] maintain balance across three metrics, whereas
EGGAN-U [33, 40], StegoGAN [65], and UNSB [26] con-
tinue to exhibit subpar performance. As for diffusion-based
models, ControlNet [73], T2I-Adapter [46], and FCDiffu-



Table 2. Quantitative comparison with the state-of-the-arts. The best results are highlighted in bold and the second best results are
underlined. The methods in the first half of the table are GAN-based, while the latter half are based on diffusion models.

Method Reference M?3FD dataset FLIR-aligned dataset

FID] PSNR?T SSIM7T FID] PSNR?T SSIMT
Pix2Pix [24] CVPR;7 182.14 17.19 0.5672 98.81 19.79 0.4327
CycleGAN [74] ICCVy7 114.71 14.98 0.5271 59.74 16.58 0.4091
EGGAN-U[33, 40] ICRA93 149.12 13.87 0.5455 113.51 15.76 0.4253
DR-AVIT[14] TGRS24 116.96 14.19 0.5449 65.96 16.30 0.4355
StegoGANI[65] CVPRyy 183.56 13.19 0.4303 87.57 12.44 0.3752
UNSBJ[26] ICLRoy 115.94 14.07 0.4885 85.61 9.95 0.3179
ControlNet[73] ICCVa3 140.14 15.17 0.5572 119.69 11.98 0.2783
FCDiffusion[11] AAAlyy 170.14 11.60 0.2854 180.58 10.89 0.2860
T2I-Adapter[46] AAAlyy 114.63 15.98 0.5976 91.61 12.33 0.3689
OSASIS[5] CVPRyy 243.21 14.59 0.5642 192.44 14.51 0.3774
StyleID[8] CVPRyy 135.97 12.67 0.4317 94.28 10.69 0.3086
CSGO[68] ARXIVyy 185.32 10.33 0.4147 178.04 9.63 0.3288
Pix2PixTurbo[49] ARXIVoy 98.12 16.80 0.5964 90.72 15.92 0.4590
PID[43] ARXIVyy 160.91 16.10 0.5579 43.98 18.89 0.4315
InstructPix2Pix[4] CVPRo3 81.64 17.92 0.6328 46.29 18.41 0.4481
DiffV2IR Ours 70.29 19.30 0.6620 39.99 18.63 0.4658
Visible Input CycleGAN PID Pix2PixTurbo InstructPix2Pix  DiffV2IR(ours) Infrared(GT)

Figure 3. Comparison with SOTA methods. Key differences are highlighted within a red box, such as halos and low-light scenarios. Only
the top 5 methods according to assessment metrics are shown. (Top: results from M3FD dataset; Bottom: results from FLIR-aligned
dataset.)



sion [11] still struggle to adjust effectively to the V2IR task.
Methods lacking additional training also show weak perfor-
mance. Pix2PixTurbo [49] ranks second best in SSIM, al-
though its FID remains high. PID [43] performs notably
well, achieving the second-best FID and PSNR. Instruct-
Pix2Pix [4] delivers a well-rounded performance with bal-
anced metrics.

Based on experimental outcomes and previous obser-
vations, models utilizing GANs tend to excel with sim-
pler datasets as opposed to more intricate scenes. Fur-
thermore, several techniques are significantly affected by
mode collapse, necessitating multiple training rounds to
guarantee high-quality generation. InstructPix2Pix [4],
Pix2PixTurbo [49], and our proposed DiffV2IR avoid con-
verting the visible image into a noise or feature map, which
we believe contributes to their superior performance com-
pared to other methods.

Qualitative Comparisons. As illustrated in Figure 3,
the proposed Diff V2IR offers significant improvements in
both global image quality and control over local details.
Current methods face several key issues, the most critical
being incorrect handling of halos around light sources, pri-
marily due to a lack of understanding of the infrared modal-
ity. In visible images, halo regions often exhibit high bright-
ness, whereas in infrared images, only objects emitting heat
should appear brighter. Another issue arises when pro-
cessing visible images in low-light conditions, where some
methods fail to maintain the image structure and details ef-
fectively. In contrast, Diff V2IR leverages enhanced infrared
knowledge and vision-language understanding to produce
credible images that adhere to physical principles while pro-
viding outstanding detail management.

The experiments demonstrate the effectiveness of diffu-
sion models in multi-spectral translation tasks and validate
the robustness of our proposed DiffV2IR under different
conditions.

5.3. Ablation Study

We perform an ablation study on the M3FD dataset. Table 3
highlights the impact of our progressive learning and vision-
language understanding modules.

Progressive Learning Module. We conduct experi-
ments using all possible combinations of the three phases,
relying exclusively on visible-infrared image pairs without
any additional embeddings. Since the original Stable Dif-
fusion functions as a text-to-image framework and models
fine-tuned only in phase #1 are unable to perform image
translation, we excluded that case. Each training phase con-
tributes positively to the results.

Vision-Language Understanding Module. After es-
tablishing the progressive learning approach, we initially in-
corporated two distinct embeddings for vision-language and
segmentation maps independently and subsequently com-

bined them. Although each additional individual embed-
ding enhances the quality of generation, the unified strategy,
known as the Diff V2IR method, achieves the highest level
of performance.

Hyper-parameters. A limited number of hyperparame-
ters can influence the ultimate performance. Primarily, we
experiment with denoising steps and classifier-free guid-
ance scales across three conditional inputs. Table 4 presents
the results. The ultimate outcome is a balance among sev-
eral factors, such as inference consumption and translation
quality according to these three evaluation metrics.

Table 3. The ablation study is split into two distinct stages. The
initial rows focus on evaluating the training phases of progressive
learning excluding VLUM, whereas the later rows assess the types
of information in VLUM when combined with PLM.

PLM VLUM
4 # #3 Seg. Vision- FID| PSNRT SSIM?
Map Language
x v ox - - 11398 1271  0.4013
v ovox - - 11245 13.50  0.4055
x x Vv - - 81.15 18.47  0.6439
v o ox v - - 78.10 18.71  0.6481
x v V - - 75.48 19.01  0.6533
v v Y - - 74.79 19.13  0.6557
v v oY X v 73.92 19.11  0.6563
v v v v X 71.63 19.17  0.6585
v v Y v v 70.29 19.30  0.6620

Table 4. Ablation study of denoising steps and classifier-free guid-
ance scales. st, Sv, ss denote guidance scale for vision-language,
visible image and segmentation mask, respectively. The optimal
settings we choose are highlighted in bold.

Hyper-parameters FID| PSNR?T SSIMT
50 70.92 19.37 0.6640

steps 100 70.29 19.30 0.6620
150 71.41 19.38 0.6616

200 70.69 19.33 0.6614

5.0 71.34 19.43 0.6656

ST 7.5 70.29 19.30 0.6620
10.0 72.04 19.34 0.6592

1.0 71.65 19.34 0.6663

sy 1.5 70.29 19.30 0.6620
2.0 73.02 19.24 0.6580

1.0 72.09 19.32 0.6630

Sg 1.5 70.29 19.30 0.6620
2.0 72.45 19.37 0.6631




6. Conclusion

Converting visible images into infrared images is highly de-
manded and is not adequately addressed. The primary chal-
lenges are generating content with semantic awareness, dif-
ferences in spectrum appearances, and the scarcity of ef-
fective infrared datasets. This study introduces DiffV2IR,
an innovative framework for translating visible images into
infrared images. By integrating PLM, VLUM and the com-
prehensive IR-500K dataset, we significantly enhance the
V2IR translation performance. Experimental findings con-
firm the effectiveness of diffusion models in generating su-
perior translations, demonstrating their efficacy and wide-
ranging applicability, thereby offering a fresh approach for
multi-spectral image generation.

Limitation. DiffV2IR is specialized in translating broad
scenes, which may restrict its effectiveness in specific ap-
plications such as face image translation.

Potential Negative Impact. DiffV2IR focuses on infrared
image synthesis. It might be misused to create misleading
content.
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DiffV2IR: Visible-to-Infrared Diffusion Model via Vision-Language
Understanding

Supplementary Material

To provide more details of our proposed Diff V2IR, this
supplementary material includes the following content:

* Section A: Common infrared image datasets that have
been widely used in recent years.

» Section B: Intermediate results for a vivid understand-
ing of our proposed modules.

* Section C: Infrared images generated by all the SOTA
methods mentioned in our paper.

* Section D: A demo video to better illustrate our motiva-
tion and solving approach.

A. Comparison of Our Proposed IR-500K and
Other Commonly Used Infrared Datasets

Table I provides a comparison of our proposed IR-500K and
other commonly used infrared datasets. Though the scale is
not the biggest, IR-500K has the best diversity with vari-
ous scenarios, multiple camera angles, and all kinds of ob-
ject. The scenarios of IR-500K include urban scenes, such
as campus, parks, roads, infrastructures, and natural scenes
such as rivers, lakes, beaches, seas, mountains. The camera
angles consist of aerial view by drones, surveillance view
by monitors, driving view by in-vihecle cameras, horizon-
tal view by handheld cameras, and so on. The main ob-
jects comprise human beings, vehicles, wild animals, natu-
ral landscapes, and buildings.

B. Intermediate Results

Figure I presents intermediate outcomes of PLM and
VLUM, highlighting their effectiveness. Although origi-
nal stable diffusion (v 1.5) excels at generating images from
text owing to extensive training data, it struggles with the in-
frared modality due to limited infrared knowledge. Hence,
the generated output is far from a normal infrared image. In
Phase #1 of PLM, the model internalizes the infrared rep-
resentation, allowing it to produce high-quality infrared im-
ages, although without precise control. From Figure I col-
umn 2, the output of PLM Phase #1 shows good appearance
as an infrared image. During Phase #2, the model starts to
convert visible images into infrared ones with a guidance
visible imange and a segmantation map, maintaining struc-
tural integrity, though stylization remains challenging due
to the tight link between semantics and infrared imagery.
Finally, with the refinement of stylization in phase #3 and
the incorporation of VLUM, the model achieves both struc-
ture preservation and semantic awareness. Our final outputs
of Diff V2IR can have both good texture matching and struc-

tural preservation.

C. More Visualization Results

We present the visual results of infrared images generated
by 15 state-of-the-art (SOTA) methods involved in the ex-
perimental comparison section.

Figure II and Figure III show the visualization results
of all the methods mentioned in our experimental part, on
M?3FD [38] and FLIR-aligned [71] dataset. There are sev-
eral main problems. The first one is that some models like
Pix2Pix [24] and PID [43] exhibit ambiguity, which causes
Image quality degradation. The second one is the failure of
preserving structure of visible inputs, such as StyleID [8]
and CSGO [68]. The third as well as the most common
problem is the overlook of semantics and context informa-
tion.

D. Demo Video

To effectively convey the research’s objectives, challenges,
and innovative aspects, we have created a video that outlines
three principal challenges in infrared image translation, de-
scribes the technical methodology for converting visible to
infrared images employed in this study, and highlights pre-
liminary implementation results.

Please refer to the demo video attached in “supplemen-
tary.zip”.



Table I. Comparison of our proposed IR-500K and other commonly used visible-infrared datasets.

Dataset Camera Angle Scenario Amount
MSRS [60] Driving Road 1,444 pairs
AVIID [13] Aerial Road 3,363 pairs
M3FD [38] Horizontal Campus, Road, Natural scenes 4,200 pairs
FLIR [10] Driving Road 9,711 IR/9,233 visible (not aligned)
LLVIP [25] Surveillance Street 15,488 pairs
DroneVehicle [58] Aerial Road, Urban area 28,439 pairs
Kaist [22] Driving Road 95,000 pairs
VTUAV [50] Aerial Urban scenes 1.7M pairs from 500 sequences
IR-500K (ours) Multiple Multiple 500K IR, 70,000 pairs
( “turn the visible image “turn the visible image of )
Input “an infrared image” “an infrared image” into infrared” + visible vision language into infrared”
L input+seg. map + visible input+seg. map J
Output

(

Method

Stable Diffusion 1.5

After Phase #1 of PLM After Phase #2 of PLM After Phase #3 of PLM + VLUM

Ground Truth

\ J\.

Figure L. Intermediate results of our proposed DiffV2IR.
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Figure II. Comparison with SOTA methods on M3FD dataset.
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Figure III. Comparison with SOTA methods on FLIR-aligned dataset.
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